論文の概要: Reducing the Deployment-Time Inference Control Costs of Deep
Reinforcement Learning Agents via an Asymmetric Architecture
- arxiv url: http://arxiv.org/abs/2105.14471v1
- Date: Sun, 30 May 2021 09:14:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-03 10:37:22.767560
- Title: Reducing the Deployment-Time Inference Control Costs of Deep
Reinforcement Learning Agents via an Asymmetric Architecture
- Title(参考訳): 非対称アーキテクチャによる深層強化学習エージェントの展開時間推論制御コストの削減
- Authors: Chin-Jui Chang, Yu-Wei Chu, Chao-Hsien Ting, Hao-Kang Liu, Zhang-Wei
Hong, Chun-Yi Lee
- Abstract要約: 計算コストの高い政策と経済的な政策を切り替えることで、全体的な推論コストを削減できる非対称アーキテクチャを提案する。
その結果,提案手法はエージェント全体の性能を維持しつつ,推論コストを低減できることがわかった。
- 参考スコア(独自算出の注目度): 6.824961837445515
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep reinforcement learning (DRL) has been demonstrated to provide promising
results in several challenging decision making and control tasks. However, the
required inference costs of deep neural networks (DNNs) could prevent DRL from
being applied to mobile robots which cannot afford high energy-consuming
computations. To enable DRL methods to be affordable in such energy-limited
platforms, we propose an asymmetric architecture that reduces the overall
inference costs via switching between a computationally expensive policy and an
economic one. The experimental results evaluated on a number of representative
benchmark suites for robotic control tasks demonstrate that our method is able
to reduce the inference costs while retaining the agent's overall performance.
- Abstract(参考訳): 深層強化学習(DRL)は、いくつかの困難な意思決定と制御タスクにおいて有望な結果をもたらすことが示されている。
しかし、ディープニューラルネットワーク(DNN)に必要な推論コストは、DRLが高エネルギー消費計算の余裕のない移動ロボットに適用されるのを防ぐことができる。
そこで本稿では, DRL法をエネルギー制限型プラットフォームで安価に利用するために, 計算コストのかかるポリシーと経済政策を切り替えることで, 全体的な推論コストを削減できる非対称アーキテクチャを提案する。
ロボット制御タスクの代表的ベンチマークスイートを用いて評価した結果,エージェント全体の性能を維持しながら,提案手法が推論コストを低減できることが実証された。
関連論文リスト
- Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
本稿では,実世界の配水ネットワーク(WDN)のリアルタイム制御を強化するために,ポンプスケジューリング最適化問題に対処する。
我々の主な目的は、エネルギー消費と運用コストを削減しつつ、物理的な運用上の制約を遵守することである。
進化に基づくアルゴリズムや遺伝的アルゴリズムのような伝統的な最適化手法は、収束保証の欠如によってしばしば不足する。
論文 参考訳(メタデータ) (2023-10-13T21:26:16Z) - Digital Twin Assisted Deep Reinforcement Learning for Online Admission
Control in Sliced Network [19.152875040151976]
この問題に対処するために、ディジタルツイン(DT)高速化DRLソリューションを提案する。
ニューラルネットワークベースのDTは、システムをキューイングするためのカスタマイズされた出力層を備え、教師付き学習を通じてトレーニングされ、DRLモデルのトレーニングフェーズを支援するために使用される。
DT加速DRLは、直接訓練された最先端Q-ラーニングモデルと比較して、リソース利用率を40%以上向上させる。
論文 参考訳(メタデータ) (2023-10-07T09:09:19Z) - Actively Learning Costly Reward Functions for Reinforcement Learning [56.34005280792013]
複雑な実世界の環境でエージェントを訓練することは、桁違いに高速であることを示す。
強化学習の手法を新しい領域に適用することにより、興味深く非自明な解を見つけることができることを示す。
論文 参考訳(メタデータ) (2022-11-23T19:17:20Z) - A Transferable and Automatic Tuning of Deep Reinforcement Learning for
Cost Effective Phishing Detection [21.481974148873807]
現実の課題の多くは、複数の補完的な学習モデルのアンサンブルを配置する必要がある。
Deep Reinforcement Learning (DRL) はコスト効率のよい代替手段であり、検出器は前者の出力に基づいて動的に選択される。
論文 参考訳(メタデータ) (2022-09-19T14:09:07Z) - Stock Trading Optimization through Model-based Reinforcement Learning
with Resistance Support Relative Strength [4.322320095367326]
我々は、モデルベース強化学習(MBRL)アルゴリズムにおける行動の正規化用語として、抵抗とサポート(RS)レベルを活用する新しいアプローチを設計する。
提案手法は、新型コロナウイルス(COVID-19)のパンデミック期、金融市場が予測不可能な危機に陥った時に、大きな下落(最大減損)にも耐えられる。
論文 参考訳(メタデータ) (2022-05-30T12:36:48Z) - Improving Robustness of Reinforcement Learning for Power System Control
with Adversarial Training [71.7750435554693]
電力系統制御のために提案された最先端のRLエージェントが敵攻撃に対して脆弱であることを示す。
具体的には、敵のマルコフ決定プロセスを用いて攻撃方針を学習し、攻撃の有効性を実証する。
本稿では,RLエージェントの攻撃に対する堅牢性を高め,実行不可能な運用上の決定を回避するために,敵の訓練を利用することを提案する。
論文 参考訳(メタデータ) (2021-10-18T00:50:34Z) - Adaptive Stochastic ADMM for Decentralized Reinforcement Learning in
Edge Industrial IoT [106.83952081124195]
強化学習 (Reinforcement Learning, RL) は, 意思決定および最適制御プロセスのための有望な解法として広く研究されている。
本稿では,Adaptive ADMM (asI-ADMM)アルゴリズムを提案する。
実験の結果,提案アルゴリズムは通信コストやスケーラビリティの観点から技術状況よりも優れており,複雑なIoT環境に適応できることがわかった。
論文 参考訳(メタデータ) (2021-06-30T16:49:07Z) - Causal Inference Q-Network: Toward Resilient Reinforcement Learning [57.96312207429202]
観測干渉を有する弾力性のあるDRLフレームワークを検討する。
本稿では、因果推論Q-network (CIQ) と呼ばれる因果推論に基づくDRLアルゴリズムを提案する。
実験の結果,提案手法は観測干渉に対して高い性能と高反発性を実現することができた。
論文 参考訳(メタデータ) (2021-02-18T23:50:20Z) - Deep Controlled Learning for Inventory Control [0.0]
Controlled Deep Learning (DCL)は、在庫問題に対処するために特別に設計された近似ポリシーに基づく新しいDRLフレームワークである。
DCLは、失われた在庫管理、分かりやすい在庫システム、そして無作為なリードタイムで在庫システムにおいて、既存の最先端のイテレーションを上回ります。
これらの大幅な性能改善とロバスト性改善は、在庫管理問題に適合したDRLアルゴリズムを効果的に適用する道を開く。
論文 参考訳(メタデータ) (2020-11-30T18:53:08Z) - Deep Reinforcement Learning with Population-Coded Spiking Neural Network
for Continuous Control [0.0]
深層強化学習(DRL)を用いた深層批評家ネットワークと連携して訓練された集団符号化スパイキングアクターネットワーク(PopSAN)を提案する。
我々は、トレーニング済みのPopSANをIntelのLoihiニューロモルフィックチップにデプロイし、本手法をメインストリームのDRLアルゴリズムと比較し、連続的な制御を行った。
本研究はニューロモルフィックコントローラの効率性をサポートし,エネルギー効率とロバスト性の両方が重要である場合,我々のハイブリッドRLをディープラーニングの代替として提案する。
論文 参考訳(メタデータ) (2020-10-19T16:20:45Z) - Demand Responsive Dynamic Pricing Framework for Prosumer Dominated
Microgrids using Multiagent Reinforcement Learning [59.28219519916883]
本稿では,実時間価格(RTP)DR技術を実装したマルチエージェント強化学習に基づく意思決定環境を提案する。
提案手法は,従来のDR法に共通するいくつかの欠点に対処し,グリッド演算子とプロシューマーに大きな経済的利益をもたらす。
論文 参考訳(メタデータ) (2020-09-23T01:44:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。