論文の概要: Attention Based Semantic Segmentation on UAV Dataset for Natural
Disaster Damage Assessment
- arxiv url: http://arxiv.org/abs/2105.14540v2
- Date: Tue, 1 Jun 2021 18:11:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-03 09:18:59.316768
- Title: Attention Based Semantic Segmentation on UAV Dataset for Natural
Disaster Damage Assessment
- Title(参考訳): 自然災害評価のためのUAVデータセットの注意に基づくセマンティックセマンティックセグメンテーション
- Authors: Tashnim Chowdhury, Maryam Rahnemoonfar
- Abstract要約: 我々は,高解像度UAVデータセット上に,自己アテンションに基づくセマンティックセマンティックセマンティクスモデルを実装した。
その結果、人命を救うとともに経済損失を減らす自然災害被害評価に自己注意型スキームを使うことが示唆された。
- 参考スコア(独自算出の注目度): 0.7614628596146599
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The detrimental impacts of climate change include stronger and more
destructive hurricanes happening all over the world. Identifying different
damaged structures of an area including buildings and roads are vital since it
helps the rescue team to plan their efforts to minimize the damage caused by a
natural disaster. Semantic segmentation helps to identify different parts of an
image. We implement a novel self-attention based semantic segmentation model on
a high resolution UAV dataset and attain Mean IoU score of around 88% on the
test set. The result inspires to use self-attention schemes in natural disaster
damage assessment which will save human lives and reduce economic losses.
- Abstract(参考訳): 気候変動による有害な影響には、世界中の強大で破壊的なハリケーンが含まれる。
自然災害による被害を最小限に抑えるため、救助隊の計画を支援するため、建物や道路を含む地域の被害の異なる構造物の特定が不可欠である。
セマンティックセグメンテーションは、画像の異なる部分を特定するのに役立つ。
我々は,高分解能UAVデータセット上に,自己注意に基づくセマンティックセマンティックセマンティクスモデルを実装し,テストセットで約88%のMean IoUスコアを得る。
その結果、人命を救うとともに経済損失を減らす自然災害被害評価に自己注意型スキームを使うことが示唆された。
関連論文リスト
- CrisisSense-LLM: Instruction Fine-Tuned Large Language Model for Multi-label Social Media Text Classification in Disaster Informatics [49.2719253711215]
本研究では,事前学習型大規模言語モデル(LLM)の強化による災害テキスト分類への新たなアプローチを提案する。
本手法では,災害関連ツイートから包括的インストラクションデータセットを作成し,それをオープンソース LLM の微調整に用いる。
この微調整モデルでは,災害関連情報の種類,情報化,人的援助の関与など,複数の側面を同時に分類することができる。
論文 参考訳(メタデータ) (2024-06-16T23:01:10Z) - Generalizable Disaster Damage Assessment via Change Detection with Vision Foundation Model [17.016411785224317]
本稿では, DAVI(Disaster Assessment with VIsion foundation model)を提案する。
DAVIは、ソース領域でトレーニングされたモデルからイメージセグメンテーション基礎モデルにタスク固有の知識を統合し、ターゲット領域の損傷の可能性を示す擬似ラベルを生成する。
次に、ピクセルと全体像の両方をターゲットとした2段階の精細化プロセスを使用して、災害現場におけるより正確に変化を特定します。
論文 参考訳(メタデータ) (2024-06-12T09:21:28Z) - CrisisMatch: Semi-Supervised Few-Shot Learning for Fine-Grained Disaster
Tweet Classification [51.58605842457186]
半教師付き, 少数ショットの学習環境下で, 微粒な災害ツイート分類モデルを提案する。
私たちのモデルであるCrisisMatchは、ラベルなしデータと大量のラベルなしデータを用いて、ツイートを関心の細かいクラスに効果的に分類する。
論文 参考訳(メタデータ) (2023-10-23T07:01:09Z) - AB2CD: AI for Building Climate Damage Classification and Detection [0.0]
本研究では, 自然災害の文脈において, 建物の損傷評価を正確に行うための深層学習手法の実装について検討する。
我々は,低品質・騒音ラベルの影響を考慮しつつ,新たな災害・地域への一般化の課題に取り組む。
我々の研究結果は、気候変動によって引き起こされる極端気象事象の影響評価を強化するための高度なAIソリューションの可能性と限界を示している。
論文 参考訳(メタデータ) (2023-09-03T03:37:04Z) - Transformer-based Flood Scene Segmentation for Developing Countries [1.7499351967216341]
洪水は大規模な自然災害であり、しばしば大量の死者、大規模な材料被害、経済的混乱を引き起こす。
早期警戒システム(EWS)は洪水を予測するための水位やその他の要因を常に評価し、被害を最小限に抑える。
FloodTransformerは、災害現場の空中画像から浸水した領域を検出し、セグメンテーションする最初のビジュアルトランスフォーマーベースのモデルである。
論文 参考訳(メタデータ) (2022-10-09T10:29:41Z) - RescueNet: A High Resolution UAV Semantic Segmentation Benchmark Dataset for Natural Disaster Damage Assessment [0.0]
RescueNetはハリケーン・マイケルの後に収集された災害後の画像を含んでいる。
RescueNetは、建物、道路、プール、木など、すべてのクラスに対してピクセルレベルのアノテーションを提供する。
本研究では,RescueNet上での最先端セグメンテーションモデルを実装することにより,データセットの有用性を評価する。
論文 参考訳(メタデータ) (2022-02-24T20:56:29Z) - Assessing out-of-domain generalization for robust building damage
detection [78.6363825307044]
建築損傷検出は、衛星画像にコンピュータビジョン技術を適用することで自動化することができる。
モデルは、トレーニングで利用可能な災害画像と、新しいイベントの画像の間の分散の変化に対して堅牢でなければならない。
今後はOOD体制に重点を置くべきだと我々は主張する。
論文 参考訳(メタデータ) (2020-11-20T10:30:43Z) - Physics-informed GANs for Coastal Flood Visualization [65.54626149826066]
我々は,現在および将来の沿岸洪水の衛星画像を生成する深層学習パイプラインを構築した。
物理に基づく洪水図と比較して画像を評価することにより,提案手法は物理的一貫性とフォトリアリズムの両方において,ベースラインモデルよりも優れていることがわかった。
この研究は沿岸の洪水の可視化に焦点が当てられているが、気候変動が地球をどう形作るかのグローバルな可視化を作成することを想定している。
論文 参考訳(メタデータ) (2020-10-16T02:15:34Z) - MSNet: A Multilevel Instance Segmentation Network for Natural Disaster
Damage Assessment in Aerial Videos [74.22132693931145]
本研究では, ハリケーン, 洪水, 火災などの自然災害後の建物被害を効率的に評価する課題について検討する。
最初のコントリビューションは、ソーシャルメディアからユーザ生成された空中ビデオと、インスタンスレベルのビルディング損傷マスクのアノテーションで構成される、新しいデータセットである。
第二のコントリビューションはMSNetと呼ばれる新しいモデルで、新しい領域の提案ネットワーク設計を含んでいる。
論文 参考訳(メタデータ) (2020-06-30T02:23:05Z) - RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery [83.49145695899388]
RescueNetは、建物を同時に分割し、個々の建物に対する損傷レベルを評価し、エンドツーエンドでトレーニングできる統一モデルである。
RescueNetは大規模で多様なxBDデータセットでテストされており、従来の手法よりもはるかに優れたセグメンテーションと損傷分類性能を実現している。
論文 参考訳(メタデータ) (2020-04-15T19:52:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。