論文の概要: Transformer-based Flood Scene Segmentation for Developing Countries
- arxiv url: http://arxiv.org/abs/2210.04218v1
- Date: Sun, 9 Oct 2022 10:29:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-11 15:33:47.365797
- Title: Transformer-based Flood Scene Segmentation for Developing Countries
- Title(参考訳): 発展途上国における変圧器型洪水シーンセグメンテーション
- Authors: Ahan M R, Roshan Roy, Shreyas Sunil Kulkarni, Vaibhav Soni, Ashish
Chittora
- Abstract要約: 洪水は大規模な自然災害であり、しばしば大量の死者、大規模な材料被害、経済的混乱を引き起こす。
早期警戒システム(EWS)は洪水を予測するための水位やその他の要因を常に評価し、被害を最小限に抑える。
FloodTransformerは、災害現場の空中画像から浸水した領域を検出し、セグメンテーションする最初のビジュアルトランスフォーマーベースのモデルである。
- 参考スコア(独自算出の注目度): 1.7499351967216341
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Floods are large-scale natural disasters that often induce a massive number
of deaths, extensive material damage, and economic turmoil. The effects are
more extensive and longer-lasting in high-population and low-resource
developing countries. Early Warning Systems (EWS) constantly assess water
levels and other factors to forecast floods, to help minimize damage.
Post-disaster, disaster response teams undertake a Post Disaster Needs
Assessment (PDSA) to assess structural damage and determine optimal strategies
to respond to highly affected neighbourhoods. However, even today in developing
countries, EWS and PDSA analysis of large volumes of image and video data is
largely a manual process undertaken by first responders and volunteers. We
propose FloodTransformer, which to the best of our knowledge, is the first
visual transformer-based model to detect and segment flooded areas from aerial
images at disaster sites. We also propose a custom metric, Flood Capacity (FC)
to measure the spatial extent of water coverage and quantify the segmented
flooded area for EWS and PDSA analyses. We use the SWOC Flood segmentation
dataset and achieve 0.93 mIoU, outperforming all other methods. We further show
the robustness of this approach by validating across unseen flood images from
other flood data sources.
- Abstract(参考訳): 洪水は大規模な自然災害であり、しばしば大量の死者、大規模な材料被害、経済的混乱を引き起こす。
高人口国や低資源開発国では、この効果はより広範囲で長続きする。
早期警戒システム(EWS)は洪水を予測するための水位やその他の要因を常に評価し、被害を最小限に抑える。
災害後、災害対応チームは、災害ニーズ評価(pdsa)を行い、構造的損傷を評価し、高い影響のある近隣地域に対応するための最適な戦略を決定する。
しかし, 発展途上国においても, EWS と PDSA による大量の画像・映像データの分析は, 第一応答者やボランティアが行う手作業である。
本研究では,災害現場の航空画像から浸水した地域を検知し区分する視覚トランスフォーマモデルとして,我々の知識を最大限に活用するfloodtransformerを提案する。
EWS と PDSA 分析のための区分けされた浸水面積を定量化するために, 独自の測度 Flood Capacity (FC) も提案する。
SWOC Floodセグメンテーションデータセットを使用して0.93mIoUを達成する。
さらに、他の洪水データソースからの未確認洪水画像の検証により、このアプローチの堅牢性を示す。
関連論文リスト
- Generalizable Disaster Damage Assessment via Change Detection with Vision Foundation Model [17.016411785224317]
本稿では, DAVI(Disaster Assessment with VIsion foundation model)を提案する。
DAVIは、ソース領域でトレーニングされたモデルからイメージセグメンテーション基礎モデルにタスク固有の知識を統合し、ターゲット領域の損傷の可能性を示す擬似ラベルを生成する。
次に、ピクセルと全体像の両方をターゲットとした2段階の精細化プロセスを使用して、災害現場におけるより正確に変化を特定します。
論文 参考訳(メタデータ) (2024-06-12T09:21:28Z) - Robust Disaster Assessment from Aerial Imagery Using Text-to-Image Synthetic Data [66.49494950674402]
航空画像からの損傷評価のタスクのための大規模合成監視を作成する際に,新たなテキスト・画像生成モデルを活用する。
低リソース領域から何千ものポストディスアスター画像を生成するために、効率的でスケーラブルなパイプラインを構築しています。
我々は,xBDおよびSKAI画像のクロスジオグラフィー領域転送設定におけるフレームワークの強度を,単一ソースとマルチソースの両方で検証する。
論文 参考訳(メタデータ) (2024-05-22T16:07:05Z) - Leveraging Citizen Science for Flood Extent Detection using Machine
Learning Benchmark Dataset [0.9029386959445269]
我々は、アメリカ本土とバングラデシュ内の約36,000平方キロメートルの地域をカバーする、既知の洪水イベントの間に、ラベル付きの水域範囲と浸水地域の範囲を作成します。
また、データセットをオープンソース化し、データセットに基づいたオープンコンペティションを開催して、コミュニティ生成モデルを使用した洪水範囲検出を迅速にプロトタイプ化しました。
データセットはSentinel-1C SARデータに基づく既存のデータセットに追加され、より堅牢な洪水範囲のモデリングにつながります。
論文 参考訳(メタデータ) (2023-11-15T18:49:29Z) - AB2CD: AI for Building Climate Damage Classification and Detection [0.0]
本研究では, 自然災害の文脈において, 建物の損傷評価を正確に行うための深層学習手法の実装について検討する。
我々は,低品質・騒音ラベルの影響を考慮しつつ,新たな災害・地域への一般化の課題に取り組む。
我々の研究結果は、気候変動によって引き起こされる極端気象事象の影響評価を強化するための高度なAIソリューションの可能性と限界を示している。
論文 参考訳(メタデータ) (2023-09-03T03:37:04Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z) - Flood Prediction Using Machine Learning Models [0.0]
本稿では,異なる機械学習モデルを用いて洪水の予測を行うことにより,この自然災害の極端なリスクを低減することを目的とする。
その結果、どのモデルがより正確な結果をもたらすかを理解するために比較分析を行う。
論文 参考訳(メタデータ) (2022-08-02T03:59:43Z) - Attention Based Semantic Segmentation on UAV Dataset for Natural
Disaster Damage Assessment [0.7614628596146599]
我々は,高解像度UAVデータセット上に,自己アテンションに基づくセマンティックセマンティックセマンティクスモデルを実装した。
その結果、人命を救うとともに経済損失を減らす自然災害被害評価に自己注意型スキームを使うことが示唆された。
論文 参考訳(メタデータ) (2021-05-30T13:39:03Z) - Assessing out-of-domain generalization for robust building damage
detection [78.6363825307044]
建築損傷検出は、衛星画像にコンピュータビジョン技術を適用することで自動化することができる。
モデルは、トレーニングで利用可能な災害画像と、新しいイベントの画像の間の分散の変化に対して堅牢でなければならない。
今後はOOD体制に重点を置くべきだと我々は主張する。
論文 参考訳(メタデータ) (2020-11-20T10:30:43Z) - Physics-informed GANs for Coastal Flood Visualization [65.54626149826066]
我々は,現在および将来の沿岸洪水の衛星画像を生成する深層学習パイプラインを構築した。
物理に基づく洪水図と比較して画像を評価することにより,提案手法は物理的一貫性とフォトリアリズムの両方において,ベースラインモデルよりも優れていることがわかった。
この研究は沿岸の洪水の可視化に焦点が当てられているが、気候変動が地球をどう形作るかのグローバルな可視化を作成することを想定している。
論文 参考訳(メタデータ) (2020-10-16T02:15:34Z) - MSNet: A Multilevel Instance Segmentation Network for Natural Disaster
Damage Assessment in Aerial Videos [74.22132693931145]
本研究では, ハリケーン, 洪水, 火災などの自然災害後の建物被害を効率的に評価する課題について検討する。
最初のコントリビューションは、ソーシャルメディアからユーザ生成された空中ビデオと、インスタンスレベルのビルディング損傷マスクのアノテーションで構成される、新しいデータセットである。
第二のコントリビューションはMSNetと呼ばれる新しいモデルで、新しい領域の提案ネットワーク設計を含んでいる。
論文 参考訳(メタデータ) (2020-06-30T02:23:05Z) - RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery [83.49145695899388]
RescueNetは、建物を同時に分割し、個々の建物に対する損傷レベルを評価し、エンドツーエンドでトレーニングできる統一モデルである。
RescueNetは大規模で多様なxBDデータセットでテストされており、従来の手法よりもはるかに優れたセグメンテーションと損傷分類性能を実現している。
論文 参考訳(メタデータ) (2020-04-15T19:52:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。