Quantum dynamics of open many-qubit systems strongly coupled to a
quantized electromagnetic field in dissipative cavities
- URL: http://arxiv.org/abs/2105.14674v2
- Date: Mon, 30 Aug 2021 20:20:33 GMT
- Title: Quantum dynamics of open many-qubit systems strongly coupled to a
quantized electromagnetic field in dissipative cavities
- Authors: Mikhail Tokman, Qianfan Chen, Maria Erukhimova, Yongrui Wang, Alexey
Belyanin
- Abstract summary: We study quantum dynamics of many-qubit systems strongly coupled to a quantized electromagnetic cavity mode.
We show that depending on the initial quantum state preparation, the systems can evolve into a rich variety of entangled states.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study quantum dynamics of many-qubit systems strongly coupled to a
quantized electromagnetic cavity mode, in the presence of decoherence and
dissipation for both fermions and cavity photons. The analytic solutions are
derived for a broad class of open quantum systems in Lindblad approximation.
They include identical qubits, an ensemble of qubits with a broad distribution
of transition frequencies, and multi-level electron systems. Compact analytic
solutions for time-dependent quantum state amplitudes and observables become
possible with the use of the stochastic equation of evolution for the state
vector. We show that depending on the initial quantum state preparation, the
systems can evolve into a rich variety of entangled states with destructive or
constructive interference between the qubits. In particular, dissipation in a
cavity can drive the system into the dark states completely decoupled from the
cavity modes. We also find the regimes in which multi-electron systems with a
broad distribution of transition frequencies couple to the quantized cavity
field as a giant collective dipole.
Related papers
- Entanglement of photonic modes from a continuously driven two-level system [34.50067763557076]
We experimentally generate entangled photonic modes by continuously exciting a quantum emitter, a superconducting qubit, with a coherent drive.
We show that entanglement is generated between modes extracted from the two sidebands of the resonance fluorescence spectrum.
Our approach can be utilized to distribute entanglement at a high rate in various physical platforms.
arXiv Detail & Related papers (2024-07-10T18:48:41Z) - Simulating electronic structure on bosonic quantum computers [35.884125235274865]
One of the most promising applications of quantum computing is the simulation of many-fermion problems.
We show how an electronic structure Hamiltonian can be transformed into a system of qumodes through qubit-assisted fermion-to-qumode mapping.
arXiv Detail & Related papers (2024-04-16T02:04:11Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Open quantum dynamics of strongly coupled oscillators with
multi-configuration time-dependent Hartree propagation and Markovian quantum
jumps [0.0]
We implement a quantum state trajectory scheme for solving Lindblad quantum master equations.
We show the potential for solving the dissipative dynamics of finite size arrays of strongly interacting quantized oscillators with high excitation densities.
arXiv Detail & Related papers (2022-08-02T03:01:14Z) - Dissipation-driven formation of entangled dark states in
strongly-coupled inhomogeneous many-qubit systems in solid-state nanocavities [0.0]
We study quantum dynamics of many-qubit systems strongly coupled to a quantized electromagnetic cavity field.
We show that depending on the initial quantum state preparation, an ensemble of qubits can evolve into a rich variety of many-qubit entangled states.
arXiv Detail & Related papers (2022-07-19T19:33:32Z) - Fano Resonances in Quantum Transport with Vibrations [50.591267188664666]
Quantum mechanical scattering continuum states coupled to a scatterer with a discrete spectrum gives rise to Fano resonances.
We consider scatterers that possess internal vibrational degrees of freedom in addition to discrete states.
arXiv Detail & Related papers (2021-08-07T12:13:59Z) - Dissipative quasi-particle picture for quadratic Markovian open quantum
systems [0.0]
Correlations between different regions of a quantum many-body system can be quantified.
For closed systems, analytical and numerical tools can accurately capture the time-evolution of subsystem entropies.
Here, we make progress by formulating a dissipative quasi-particle picture for a general class of noninteracting open quantum systems.
arXiv Detail & Related papers (2021-06-22T18:10:47Z) - Detecting entanglement structure in continuous many-body quantum systems [0.0]
A prerequisite for the comprehensive understanding of many-body quantum systems is a characterization in terms of their entanglement structure.
We develop a general scheme for certifying entanglement and demonstrate it by revealing entanglement between distinct subsystems of a spinor Bose-Einstein condensate.
The detection of squeezing in Bogoliubov modes in a multi-mode setting illustrates its potential to boost the capabilities of quantum simulations to study entanglement in spatially extended many-body systems.
arXiv Detail & Related papers (2021-05-25T21:12:07Z) - Excitation dynamics in inductively coupled fluxonium circuits [0.0]
We propose a near-term quantum simulator based on the fluxonium qubits inductively coupled to form a chain.
This system provides long coherence time, large anharmonicity, and strong coupling, making it suitable to study Ising spin models.
arXiv Detail & Related papers (2021-04-07T17:55:53Z) - Probing quantum information propagation with out-of-time-ordered
correlators [41.12790913835594]
Small-scale quantum information processors hold the promise to efficiently emulate many-body quantum systems.
Here, we demonstrate the measurement of out-of-time-ordered correlators (OTOCs)
A central requirement for our experiments is the ability to coherently reverse time evolution.
arXiv Detail & Related papers (2021-02-23T15:29:08Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.