論文の概要: An Exploratory Analysis of the Relation Between Offensive Language and
Mental Health
- arxiv url: http://arxiv.org/abs/2105.14888v1
- Date: Mon, 31 May 2021 11:25:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-02 00:29:23.909657
- Title: An Exploratory Analysis of the Relation Between Offensive Language and
Mental Health
- Title(参考訳): 攻撃的言語と精神的健康の関係に関する探索的分析
- Authors: Ana-Maria Bucur, Marcos Zampieri, and Liviu P. Dinu
- Abstract要約: 我々は,自己報告型うつ病診断の有無にかかわらず,個人グループによって書かれたソーシャルメディア投稿における攻撃的言語の使用を比較するために,計算モデルを訓練する。
分析の結果,自己報告型うつ病の患者やうつ病の徴候を呈する患者では,攻撃的言語がより頻繁に使用されることが明らかとなった。
- 参考スコア(独自算出の注目度): 3.333967282951668
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we analyze the interplay between the use of offensive language
and mental health. We acquired publicly available datasets created for
offensive language identification and depression detection and we train
computational models to compare the use of offensive language in social media
posts written by groups of individuals with and without self-reported
depression diagnosis. We also look at samples written by groups of individuals
whose posts show signs of depression according to recent related studies. Our
analysis indicates that offensive language is more frequently used in the
samples written by individuals with self-reported depression as well as
individuals showing signs of depression. The results discussed here open new
avenues in research in politeness/offensiveness and mental health.
- Abstract(参考訳): 本稿では、攻撃的言語の使用とメンタルヘルスの相互作用を分析する。
我々は攻撃的言語識別と抑うつ検出のために作成された公開データセットを取得し、自己報告された抑うつ診断のない個人によるソーシャルメディア投稿における攻撃的言語の使用を比較するために、計算モデルを訓練した。
また,最近の関連研究により,投稿がうつ病の徴候を示す個人群によるサンプルについても検討した。
分析の結果,自己報告型うつ病の患者やうつ病の徴候を呈する患者では,攻撃的言語がより頻繁に使用されることが明らかとなった。
ここでは、丁寧さ・攻撃性・精神健康研究の新たな道が開かれた。
関連論文リスト
- LLM Questionnaire Completion for Automatic Psychiatric Assessment [49.1574468325115]
大規模言語モデル(LLM)を用いて、非構造的心理面接を、様々な精神科領域と人格領域にまたがる構造化された質問票に変換する。
得られた回答は、うつ病の標準化された精神医学的指標(PHQ-8)とPTSD(PCL-C)の予測に使用される特徴として符号化される。
論文 参考訳(メタデータ) (2024-06-09T09:03:11Z) - Context is Important in Depressive Language: A Study of the Interaction Between the Sentiments and Linguistic Markers in Reddit Discussions [2.6571678272335717]
本研究では,抑うつにおける言語マーカーと感情表現の文脈としての議論トピックの影響について検討した。
我々の感情分析では、抑うつ者の感情の強さは、コントロールよりも否定的感情と肯定的感情の両方が高いことが判明した。
論文 参考訳(メタデータ) (2024-05-28T11:19:39Z) - Depression detection in social media posts using affective and social
norm features [84.12658971655253]
ソーシャルメディア投稿からの抑うつ検出のための奥深いアーキテクチャを提案する。
我々は、後期融合方式を用いて、ポストとワードの敬称と道徳的特徴をアーキテクチャに組み込んだ。
提案された機能を含めると、両方の設定で最先端の結果が得られます。
論文 参考訳(メタデータ) (2023-03-24T21:26:27Z) - Handwriting and Drawing for Depression Detection: A Preliminary Study [53.11777541341063]
精神健康に対する短期的コビデンスの影響は、不安や抑うつ症状の顕著な増加であった。
本研究の目的は、健康な人とうつ病患者を識別するために、オンライン手書き・図面解析という新しいツールを使用することである。
論文 参考訳(メタデータ) (2023-02-05T22:33:49Z) - Semantic Similarity Models for Depression Severity Estimation [53.72188878602294]
本稿では、ソーシャルメディアの文章に基づいて、個人のうつ病の重症度を研究するための効率的なセマンティックパイプラインを提案する。
我々は,抑うつ症状と重度レベルに対応する代表訓練文の指標に対して意味的ランキングを生成するために,テストユーザ文を使用する。
本手法を2つのRedditベースのベンチマークで評価し,うつ病の重症度を指標として,最先端技術よりも30%改善した。
論文 参考訳(メタデータ) (2022-11-14T18:47:26Z) - Data set creation and empirical analysis for detecting signs of
depression from social media postings [0.0]
うつ病は、深刻な結果を避けるために、早期に検出され治療されなければならない一般的な精神疾患である。
我々は、ソーシャルメディアの投稿から、うつ病のレベルが落ち込んでいないこと、中程度に落ち込んでいないこと、および深刻な落ち込んでいないことを検知する、金の標準データセットを開発した。
論文 参考訳(メタデータ) (2022-02-07T10:24:33Z) - Perception Point: Identifying Critical Learning Periods in Speech for
Bilingual Networks [58.24134321728942]
ディープニューラルベース視覚唇読解モデルにおける認知的側面を比較し,識別する。
我々は、認知心理学におけるこれらの理論と独自のモデリングの間に強い相関関係を観察する。
論文 参考訳(メタデータ) (2021-10-13T05:30:50Z) - A Psychologically Informed Part-of-Speech Analysis of Depression in
Social Media [1.7188280334580193]
私たちは、Early Risk Prediction on the Internet Workshop (eRisk) 2018のうつ病データセットを使用します。
その結果, うつ病者と非うつ病者の間に統計的に有意な差が認められた。
我々の研究は、抑うつした個人がソーシャルメディアプラットフォーム上で自己表現している方法に関する洞察を提供する。
論文 参考訳(メタデータ) (2021-07-31T16:23:22Z) - Learning Language and Multimodal Privacy-Preserving Markers of Mood from
Mobile Data [74.60507696087966]
精神状態は、先進医療に共通する国でも診断されていない。
人間の行動を監視するための有望なデータソースのひとつは、日々のスマートフォンの利用だ。
本研究では,自殺行動のリスクが高い青少年集団の移動行動のデータセットを用いて,日常生活の行動マーカーについて検討した。
論文 参考訳(メタデータ) (2021-06-24T17:46:03Z) - Hybrid approach to detecting symptoms of depression in social media
entries [0.0]
我々はColllgram解析を適用して,抑うつスクリーニング問題に対する革新的なアプローチを提案する。
診断精度71%のハイブリッドモデルを構築した。
論文 参考訳(メタデータ) (2021-06-19T12:28:30Z) - Affective Conditioning on Hierarchical Networks applied to Depression
Detection from Transcribed Clinical Interviews [0.0]
抑うつは、被験者の気分だけでなく、言語の使用にも影響を及ぼす精神障害である。
我々は階層的注意ネットワークを用いて抑うつ者のインタビューを分類する。
我々は,情緒的レキシカから抽出した言語的特徴の条件付け機構により,モデルの注意層を増強する。
論文 参考訳(メタデータ) (2020-06-04T20:55:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。