論文の概要: Data set creation and empirical analysis for detecting signs of
depression from social media postings
- arxiv url: http://arxiv.org/abs/2202.03047v1
- Date: Mon, 7 Feb 2022 10:24:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-09 01:32:51.209720
- Title: Data set creation and empirical analysis for detecting signs of
depression from social media postings
- Title(参考訳): ソーシャルメディア投稿からうつ病の兆候を検出するためのデータセットの作成と実証分析
- Authors: Kayalvizhi S and Thenmozhi D
- Abstract要約: うつ病は、深刻な結果を避けるために、早期に検出され治療されなければならない一般的な精神疾患である。
我々は、ソーシャルメディアの投稿から、うつ病のレベルが落ち込んでいないこと、中程度に落ち込んでいないこと、および深刻な落ち込んでいないことを検知する、金の標準データセットを開発した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Depression is a common mental illness that has to be detected and treated at
an early stage to avoid serious consequences. There are many methods and
modalities for detecting depression that involves physical examination of the
individual. However, diagnosing mental health using their social media data is
more effective as it avoids such physical examinations. Also, people express
their emotions well in social media, it is desirable to diagnose their mental
health using social media data. Though there are many existing systems that
detects mental illness of a person by analysing their social media data,
detecting the level of depression is also important for further treatment.
Thus, in this research, we developed a gold standard data set that detects the
levels of depression as `not depressed', `moderately depressed' and `severely
depressed' from the social media postings. Traditional learning algorithms were
employed on this data set and an empirical analysis was presented in this
paper. Data augmentation technique was applied to overcome the data imbalance.
Among the several variations that are implemented, the model with Word2Vec
vectorizer and Random Forest classifier on augmented data outperforms the other
variations with a score of 0.877 for both accuracy and F1 measure.
- Abstract(参考訳): うつ病は、重篤な結果を避けるために早期に発見し治療しなければならない一般的な精神疾患である。
個人の身体的検査を含むうつ病を検出するための多くの方法とモダリティがある。
しかし、そのような身体検査を避けるため、ソーシャルメディアデータを用いたメンタルヘルスの診断はより効果的である。
また、人々はソーシャルメディアで感情をよく表現し、ソーシャルメディアデータを用いてメンタルヘルスを診断することが望ましい。
ソーシャルメディアデータを分析して精神疾患を検出するシステムも数多く存在するが、さらなる治療にはうつ病のレベルを検出することも重要である。
そこで本研究では,うつ病のレベルをソーシャルメディア投稿から'not depressed', 'moderately depressed', 'severely depressed'と検出するゴールドスタンダードデータセットを開発した。
本論文では,従来の学習アルゴリズムをデータセットに適用し,経験的分析を行った。
データ不均衡を克服するためにデータ拡張手法を適用した。
実装されているいくつかのバリエーションのうち、Word2VecベクタライザとRandom Forest分類器を用いたモデルは、精度とF1測度の両方で0.877のスコアで他のバリエーションよりも優れている。
関連論文リスト
- MentalArena: Self-play Training of Language Models for Diagnosis and Treatment of Mental Health Disorders [59.515827458631975]
メンタルヘルス障害は世界で最も深刻な病気の1つである。
プライバシーに関する懸念は、パーソナライズされた治療データのアクセシビリティを制限する。
MentalArenaは、言語モデルをトレーニングするためのセルフプレイフレームワークである。
論文 参考訳(メタデータ) (2024-10-09T13:06:40Z) - Exploring Social Media Posts for Depression Identification: A Study on Reddit Dataset [0.0]
うつ病は個人の個人的および専門的な生活に影響を与える最も一般的な精神疾患の1つである。
本研究では,個人のうつ病を識別するためのソーシャルメディア投稿の活用の可能性について検討した。
論文 参考訳(メタデータ) (2024-04-16T06:25:51Z) - Measuring Non-Typical Emotions for Mental Health: A Survey of Computational Approaches [57.486040830365646]
ストレスと抑うつは日々のタスクにおけるエンゲージメントに影響を与え、彼らの相互作用を理解する必要性を強調します。
この調査は、ストレス、抑うつ、エンゲージメントを分析する計算手法を同時に探求した最初のものである。
論文 参考訳(メタデータ) (2024-03-09T11:16:09Z) - What Symptoms and How Long? An Interpretable AI Approach for Depression
Detection in Social Media [0.5156484100374058]
うつ病は最も一般的で深刻な精神疾患であり、重大な財政的・社会的影響をもたらす。
本研究は、ソーシャルメディアにおける抑うつ検出のための新しい解釈可能な深層学習モデルを用いて、IS文献に寄与する。
論文 参考訳(メタデータ) (2023-05-18T20:15:04Z) - Depression detection in social media posts using affective and social
norm features [84.12658971655253]
ソーシャルメディア投稿からの抑うつ検出のための奥深いアーキテクチャを提案する。
我々は、後期融合方式を用いて、ポストとワードの敬称と道徳的特徴をアーキテクチャに組み込んだ。
提案された機能を含めると、両方の設定で最先端の結果が得られます。
論文 参考訳(メタデータ) (2023-03-24T21:26:27Z) - Depression Detection Using Digital Traces on Social Media: A
Knowledge-aware Deep Learning Approach [17.07576768682415]
うつ病は世界中でよく見られる病気だ。診断は困難であり、診断が下にある。
うつ病患者は、常に症状、主要なライフイベント、治療をソーシャルメディアで共有しているため、研究者はうつ病検出のためにソーシャルメディア上でユーザー生成のデジタルトレースに目を向けている。
本稿では,抑うつリスクのあるソーシャルメディア利用者を正確に検出し,その検出に寄与する重要な要因を説明するために,Deep Knowledge-Aware Depression Detection (DKDD)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-06T20:08:07Z) - Handwriting and Drawing for Depression Detection: A Preliminary Study [53.11777541341063]
精神健康に対する短期的コビデンスの影響は、不安や抑うつ症状の顕著な増加であった。
本研究の目的は、健康な人とうつ病患者を識別するために、オンライン手書き・図面解析という新しいツールを使用することである。
論文 参考訳(メタデータ) (2023-02-05T22:33:49Z) - Semantic Similarity Models for Depression Severity Estimation [53.72188878602294]
本稿では、ソーシャルメディアの文章に基づいて、個人のうつ病の重症度を研究するための効率的なセマンティックパイプラインを提案する。
我々は,抑うつ症状と重度レベルに対応する代表訓練文の指標に対して意味的ランキングを生成するために,テストユーザ文を使用する。
本手法を2つのRedditベースのベンチマークで評価し,うつ病の重症度を指標として,最先端技術よりも30%改善した。
論文 参考訳(メタデータ) (2022-11-14T18:47:26Z) - DEPTWEET: A Typology for Social Media Texts to Detect Depression
Severities [0.46796109436086664]
我々はうつ病の重症度を検出するために,うつ病の臨床的記述を活用してソーシャルメディアテキストのタイプロジを構築する。
精神疾患の診断・統計マニュアル(DSM-5)と患者健康アンケート(PHQ-9)の標準的臨床評価手順をエミュレートする
専門家アノテータによってラベル付けされた40191ツイートの新しいデータセットを提示します。それぞれのツイートは、"non-depressed"あるいは"depressed"とラベル付けされます。
論文 参考訳(メタデータ) (2022-10-10T08:23:57Z) - A Psychologically Informed Part-of-Speech Analysis of Depression in
Social Media [1.7188280334580193]
私たちは、Early Risk Prediction on the Internet Workshop (eRisk) 2018のうつ病データセットを使用します。
その結果, うつ病者と非うつ病者の間に統計的に有意な差が認められた。
我々の研究は、抑うつした個人がソーシャルメディアプラットフォーム上で自己表現している方法に関する洞察を提供する。
論文 参考訳(メタデータ) (2021-07-31T16:23:22Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
うつ病は最も多い精神疾患の1つであり、世界中の年齢の何百万人もの人々に影響を与えている。
機械学習技術は、早期介入と治療のためのうつ病の自動検出と予測を可能にしている。
本稿では、この課題に対処するために、2つの補助的タスクでうつ病分類を共同最適化する、新しいディープマルチタスクリカレントニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-05T05:14:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。