論文の概要: ViTA: Visual-Linguistic Translation by Aligning Object Tags
- arxiv url: http://arxiv.org/abs/2106.00250v1
- Date: Tue, 1 Jun 2021 06:19:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-02 14:38:37.716826
- Title: ViTA: Visual-Linguistic Translation by Aligning Object Tags
- Title(参考訳): ViTA:オブジェクトタグのアライメントによる視覚言語翻訳
- Authors: Kshitij Gupta, Devansh Gautam, Radhika Mamidi
- Abstract要約: マルチモーダル機械翻訳(Multimodal Machine Translation、MMT)は、翻訳のための視覚情報でソーステキストを豊かにする。
本稿では,WAT 2021の多モーダル翻訳タスクを英語からヒンディー語に翻訳するシステムを提案する。
- 参考スコア(独自算出の注目度): 7.817598216459955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal Machine Translation (MMT) enriches the source text with visual
information for translation. It has gained popularity in recent years, and
several pipelines have been proposed in the same direction. Yet, the task lacks
quality datasets to illustrate the contribution of visual modality in the
translation systems. In this paper, we propose our system for the Multimodal
Translation Task of WAT 2021 from English to Hindi. We propose to use mBART, a
pretrained multilingual sequence-to-sequence model, for the textual-only
translations. Further, we bring the visual information to a textual domain by
extracting object tags from the image and enhance the input for the multimodal
task. We also explore the robustness of our system by systematically degrading
the source text. Finally, we achieve a BLEU score of 44.6 and 51.6 on the test
set and challenge set of the task.
- Abstract(参考訳): マルチモーダル機械翻訳(mmt)は、翻訳のための視覚情報を含む原文を豊かにする。
近年は人気が高まり、同じ方向にいくつかのパイプラインが提案されている。
しかし、このタスクは、翻訳システムにおける視覚的モダリティの寄与を説明するための品質データセットを欠いている。
本稿では,WAT 2021の多モーダル翻訳タスクを英語からヒンディー語に翻訳するシステムを提案する。
我々は、テキストのみの翻訳に、事前訓練された多言語列列列列モデルであるmBARTを用いることを提案する。
さらに、画像からオブジェクトタグを抽出し、マルチモーダルタスクの入力を強化することにより、視覚情報をテキスト領域に持ち込む。
また,ソーステキストを体系的に劣化させることにより,システムのロバスト性について検討する。
最後に、タスクのテストセットとチャレンジセットにおいて、BLEUスコア44.6と51.6を達成する。
関連論文リスト
- AnyTrans: Translate AnyText in the Image with Large Scale Models [88.5887934499388]
本稿では、画像中のタスク翻訳AnyText(TATI)のためのオール・エンコンパス・フレームワークであるAnyTransを紹介する。
我々のフレームワークは、翻訳中にテキスト要素と視覚要素の両方から文脈的手がかりを取り入れている。
6つの言語対の多言語テキスト画像翻訳データからなるMTIT6というテストデータセットを精巧にコンパイルした。
論文 参考訳(メタデータ) (2024-06-17T11:37:48Z) - Exploring the Necessity of Visual Modality in Multimodal Machine Translation using Authentic Datasets [3.54128607634285]
実世界の翻訳データセットを活用し,視覚的モダリティが翻訳効率に与える影響について検討した。
視覚的モダリティは、実際の翻訳データセットの大部分に有利であることが判明した。
以上の結果から,視覚情報は多モーダル翻訳における補助的役割を担っていることが示唆された。
論文 参考訳(メタデータ) (2024-04-09T08:19:10Z) - Translation-Enhanced Multilingual Text-to-Image Generation [61.41730893884428]
テキスト・ツー・イメージ・ジェネレーション(TTI)の研究は、現在でも主に英語に焦点を当てている。
そこで本研究では,多言語TTIとニューラルマシン翻訳(NMT)のブートストラップmTTIシステムへの応用について検討する。
我々は,mTTIフレームワーク内で多言語テキスト知識を重み付け,統合する新しいパラメータ効率アプローチであるEnsemble Adapter (EnsAd)を提案する。
論文 参考訳(メタデータ) (2023-05-30T17:03:52Z) - Scene Graph as Pivoting: Inference-time Image-free Unsupervised
Multimodal Machine Translation with Visual Scene Hallucination [88.74459704391214]
本研究では,より現実的なマルチモーダル機械翻訳(UMMT)について検討する。
視覚・言語シーングラフ(SG)を用いて,入力画像とテキストを表現し,その微細な視覚言語特徴が意味論の全体的理解を確実にする。
教師なし翻訳学習には,SG-pivotingに基づく学習目的がいくつか導入されている。
提案手法は,タスクとセットアップにおいて,BLEUスコアの有意な向上により,最良性能のベースラインを上回ります。
論文 参考訳(メタデータ) (2023-05-20T18:17:20Z) - Improving End-to-End Text Image Translation From the Auxiliary Text
Translation Task [26.046624228278528]
本稿では,テキスト翻訳を補助タスクとするエンドツーエンドモデルを訓練する,新しいテキスト翻訳拡張テキスト画像翻訳を提案する。
モデルパラメータとマルチタスクのトレーニングを共有することで,大規模テキスト並列コーパスを最大限に活用することができる。
論文 参考訳(メタデータ) (2022-10-08T02:35:45Z) - Exploiting BERT For Multimodal Target SentimentClassification Through
Input Space Translation [75.82110684355979]
オブジェクト認識変換器を用いて入力空間内の画像を変換する2ストリームモデルを提案する。
次に、翻訳を利用して、言語モデルに多モーダル情報を提供する補助文を構築する。
2つのマルチモーダルTwitterデータセットで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-08-03T18:02:38Z) - FST: the FAIR Speech Translation System for the IWSLT21 Multilingual
Shared Task [36.51221186190272]
IWSLT 2021評価キャンペーンに提出したエンドツーエンドの多言語音声翻訳システムについて述べる。
本システムは,モダリティ,タスク,言語間の伝達学習を活用して構築する。
論文 参考訳(メタデータ) (2021-07-14T19:43:44Z) - UC2: Universal Cross-lingual Cross-modal Vision-and-Language
Pre-training [52.852163987208826]
UC2は、言語間クロスモーダル表現学習のための最初の機械翻訳拡張フレームワークである。
Masked Region-token Modeling (MRTM) と Visual Translation Language Modeling (VTLM) の2つの新しいプリトレーニングタスクを提案する。
提案手法は,英語タスクにおける単言語学習モデルと同等の性能を維持しつつ,多種多様な非英語ベンチマークで新たな最先端を実現する。
論文 参考訳(メタデータ) (2021-04-01T08:30:53Z) - Simultaneous Machine Translation with Visual Context [42.88121241096681]
同時機械翻訳(SiMT)は、連続的な入力テキストストリームを低レイテンシで最高の品質で別の言語に変換することを目的としている。
我々は、様々なマルチモーダルアプローチと視覚的特徴が最先端のSiMTフレームワークに与える影響を分析する。
論文 参考訳(メタデータ) (2020-09-15T18:19:11Z) - Unsupervised Multimodal Neural Machine Translation with Pseudo Visual
Pivoting [105.5303416210736]
非教師なし機械翻訳(MT)は、最近モノリンガルコーパスのみを用いて印象的な結果を得た。
ソースターゲットの文を潜時空間で関連付けることは依然として困難である。
異なる言語が生物学的に類似の視覚システムを共有しているため、視覚的コンテンツを通してより良いアライメントを達成する可能性は有望である。
論文 参考訳(メタデータ) (2020-05-06T20:11:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。