論文の概要: AnyTrans: Translate AnyText in the Image with Large Scale Models
- arxiv url: http://arxiv.org/abs/2406.11432v1
- Date: Mon, 17 Jun 2024 11:37:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 15:11:33.126839
- Title: AnyTrans: Translate AnyText in the Image with Large Scale Models
- Title(参考訳): AnyTrans: 画像中のAnyTextを大規模モデルで翻訳する
- Authors: Zhipeng Qian, Pei Zhang, Baosong Yang, Kai Fan, Yiwei Ma, Derek F. Wong, Xiaoshuai Sun, Rongrong Ji,
- Abstract要約: 本稿では、画像中のタスク翻訳AnyText(TATI)のためのオール・エンコンパス・フレームワークであるAnyTransを紹介する。
我々のフレームワークは、翻訳中にテキスト要素と視覚要素の両方から文脈的手がかりを取り入れている。
6つの言語対の多言語テキスト画像翻訳データからなるMTIT6というテストデータセットを精巧にコンパイルした。
- 参考スコア(独自算出の注目度): 88.5887934499388
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces AnyTrans, an all-encompassing framework for the task-Translate AnyText in the Image (TATI), which includes multilingual text translation and text fusion within images. Our framework leverages the strengths of large-scale models, such as Large Language Models (LLMs) and text-guided diffusion models, to incorporate contextual cues from both textual and visual elements during translation. The few-shot learning capability of LLMs allows for the translation of fragmented texts by considering the overall context. Meanwhile, the advanced inpainting and editing abilities of diffusion models make it possible to fuse translated text seamlessly into the original image while preserving its style and realism. Additionally, our framework can be constructed entirely using open-source models and requires no training, making it highly accessible and easily expandable. To encourage advancement in the TATI task, we have meticulously compiled a test dataset called MTIT6, which consists of multilingual text image translation data from six language pairs.
- Abstract(参考訳): 本稿では、画像中の多言語テキスト翻訳とテキスト融合を含む、タスク翻訳AnyText in the Image(TATI)のためのオール・エンコンパス・フレームワークであるAnyTransを紹介する。
我々のフレームワークは,大言語モデル(LLM)やテキスト誘導拡散モデルといった大規模モデルの強みを活用し,翻訳中のテキスト要素と視覚要素の両方からコンテキスト的手がかりを組み込む。
LLMの少数ショット学習能力は、全体的な文脈を考慮して断片化されたテキストの翻訳を可能にする。
一方、拡散モデルの高度な塗り絵や編集能力により、そのスタイルやリアリズムを保ちながら、翻訳されたテキストを元の画像にシームレスに融合させることができる。
さらに、私たちのフレームワークは、完全にオープンソースモデルを使って構築することができ、トレーニングを必要とせず、非常にアクセスしやすく、容易に拡張できます。
TATIタスクの進歩を促進するため、6つの言語対の多言語テキスト画像翻訳データからなるMTIT6と呼ばれるテストデータセットを慎重にコンパイルした。
関連論文リスト
- Conditional Text-to-Image Generation with Reference Guidance [81.99538302576302]
本稿では,拡散モデルを生成するために,特定の対象の視覚的ガイダンスを提供する画像の追加条件を用いて検討する。
我々は、異なる参照を取る能力を持つ安定拡散モデルを効率的に支持する、小規模のエキスパートプラグインを複数開発する。
専門的なプラグインは、すべてのタスクにおいて既存のメソッドよりも優れた結果を示し、それぞれ28.55Mのトレーニング可能なパラメータしか含まない。
論文 参考訳(メタデータ) (2024-11-22T21:38:51Z) - Towards Visual Text Design Transfer Across Languages [49.78504488452978]
マルチモーダル・スタイル翻訳(MuST-Bench)の新たな課題について紹介する。
MuST-Benchは、視覚テキスト生成モデルが様々な書き込みシステム間で翻訳を行う能力を評価するために設計されたベンチマークである。
そこで我々は,スタイル記述の必要性を解消する多モーダルなスタイル翻訳フレームワークであるSIGILを紹介した。
論文 参考訳(メタデータ) (2024-10-24T15:15:01Z) - ARTIST: Improving the Generation of Text-rich Images with Disentangled Diffusion Models [52.23899502520261]
テキスト構造学習に焦点を当てたARTISTという新しいフレームワークを提案する。
我々は、事前訓練されたテキスト構造モデルからテキスト構造情報を同化できるように、視覚拡散モデルを微調整する。
MARIO-Evalベンチマークの実証結果は,提案手法の有効性を裏付けるものであり,様々な指標において最大15%の改善が見られた。
論文 参考訳(メタデータ) (2024-06-17T19:31:24Z) - AnyText: Multilingual Visual Text Generation And Editing [18.811943975513483]
拡散型多言語視覚テキスト生成・編集モデルであるAnyTextを紹介する。
AnyTextは複数の言語で文字を書くことができます。
我々は、OCRアノテーションと300万の画像テキストペアを複数言語で含む、最初の大規模多言語テキスト画像データセットであるAnyWord-3Mをコントリビュートする。
論文 参考訳(メタデータ) (2023-11-06T12:10:43Z) - De-Diffusion Makes Text a Strong Cross-Modal Interface [33.90004746543745]
我々は、事前訓練されたテキスト-画像拡散モデルを用いてデコードを行うオートエンコーダを用いる。
画像を表すDe-Diffusionテキストの精度と包括性を検証する実験。
単一のDe-Diffusionモデルは、さまざまなテキスト・トゥ・イメージツールに対して転送可能なプロンプトを提供するために一般化することができる。
論文 参考訳(メタデータ) (2023-11-01T16:12:40Z) - InternLM-XComposer: A Vision-Language Large Model for Advanced
Text-image Comprehension and Composition [111.65584066987036]
InternLM-XComposerは、高度な画像テキストの理解と合成を可能にする視覚言語による大規模モデルである。
シームレスに画像を統合するコヒーレントでコンテキスト的な記事を生成することができる。
画像がコンテンツを強化するテキスト内の領域をインテリジェントに識別し、最も適切な視覚的候補を自動的に挿入する。
論文 参考訳(メタデータ) (2023-09-26T17:58:20Z) - Exploring Better Text Image Translation with Multimodal Codebook [39.12169843196739]
テキスト画像翻訳(TIT)は、画像に埋め込まれたソーステキストをターゲット翻訳に変換することを目的としている。
本研究ではまず,中国語のTITデータセットOCRMT30Kに注釈を付け,その後の研究に便宜を提供する。
そこで本研究では,画像と関連するテキストを関連付けることができるマルチモーダルコードブックを用いたTITモデルを提案する。
本稿では,テキスト機械翻訳,画像テキストアライメント,TITタスクを含む多段階学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-27T08:41:18Z) - Grounding Language Models to Images for Multimodal Inputs and Outputs [89.30027812161686]
本稿では,事前学習したテキストのみの言語モデルを視覚領域に最適化する効率的な手法を提案する。
任意にインターリーブされた画像とテキストデータを処理し、検索した画像とインターリーブされたテキストを生成する。
論文 参考訳(メタデータ) (2023-01-31T18:33:44Z) - Improving End-to-End Text Image Translation From the Auxiliary Text
Translation Task [26.046624228278528]
本稿では,テキスト翻訳を補助タスクとするエンドツーエンドモデルを訓練する,新しいテキスト翻訳拡張テキスト画像翻訳を提案する。
モデルパラメータとマルチタスクのトレーニングを共有することで,大規模テキスト並列コーパスを最大限に活用することができる。
論文 参考訳(メタデータ) (2022-10-08T02:35:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。