論文の概要: Divide and Rule: Recurrent Partitioned Network for Dynamic Processes
- arxiv url: http://arxiv.org/abs/2106.00258v1
- Date: Tue, 1 Jun 2021 06:45:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-03 01:51:48.801327
- Title: Divide and Rule: Recurrent Partitioned Network for Dynamic Processes
- Title(参考訳): 分割とルール: 動的プロセスのための繰り返し分割ネットワーク
- Authors: Qianyu Feng, Bang Zhang, Yi Yang
- Abstract要約: 多くの動的なプロセスは、物理的システムから社会学的分析まで、相互作用する変数に関与している。
我々のゴールは、部分全体階層を持つシステムを表現し、システム内変数間の暗黙の依存関係を発見することである。
提案アーキテクチャは, (i) 複数のレベルにおける観測の階層的かつ時間的に一貫した表現を抽出する知覚モジュール, (ii) 各レベルにおけるニューロン間の関係性を決定する導出モジュール, (iii)時間分布推定を条件に未来を予測する統計的モジュールからなる。
- 参考スコア(独自算出の注目度): 25.855428321990328
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In general, many dynamic processes are involved with interacting variables,
from physical systems to sociological analysis. The interplay of components in
the system can give rise to confounding dynamic behavior. Many approaches model
temporal sequences holistically ignoring the internal interaction which are
impotent in capturing the protogenic actuation. Differently, our goal is to
represent a system with a part-whole hierarchy and discover the implied
dependencies among intra-system variables: inferring the interactions that
possess causal effects on the sub-system behavior with REcurrent partItioned
Network (REIN). The proposed architecture consists of (i) a perceptive module
that extracts a hierarchical and temporally consistent representation of the
observation at multiple levels, (ii) a deductive module for determining the
relational connection between neurons at each level, and (iii) a statistical
module that can predict the future by conditioning on the temporal
distributional estimation. Our model is demonstrated to be effective in
identifying the componential interactions with limited observation and stable
in long-term future predictions experimented with diverse physical systems.
- Abstract(参考訳): 一般に、多くの動的プロセスは相互作用変数(物理システムから社会学的分析まで)に関与している。
システム内のコンポーネントの相互作用は、相反する動的な振る舞いを引き起こす可能性がある。
多くのアプローチは、プロトゲン運動を捉えるのに有効な内部相互作用を無視した時間配列をモデル化する。
異なることに、我々のゴールは、部分全体階層を持つシステムを表現し、システム内変数間のインプリート依存性を発見することであり、これは、Recurrent partItioned Network (REIN) によるサブシステム動作に因果関係を持つ相互作用を推論することである。
提案アーキテクチャは, (i) 複数のレベルにおける観測の階層的かつ時間的に一貫した表現を抽出する知覚モジュール, (ii) 各レベルにおけるニューロン間の関係性を決定する導出モジュール, (iii)時間分布推定を条件に未来を予測する統計的モジュールからなる。
本モデルは,様々な物理システムを用いた長期予測において,限られた観測と安定なコンポーネント間相互作用の同定に有効であることが実証された。
関連論文リスト
- Behavior-Inspired Neural Networks for Relational Inference [3.7219180084857473]
最近の研究は、エージェント間の関係を、その身体行動の観察に基づいて分類することを学ぶ。
エージェントの観測可能な振る舞いと,その動作を決定する潜在カテゴリの抽象化レベルを導入する。
エージェントの身体的近さと嗜好を非線形意見力学モデルに統合し、相互排他的潜在カテゴリを特定し、エージェントの時間的進化を予測し、エージェントの身体的挙動を制御するメカニズムを提供する。
論文 参考訳(メタデータ) (2024-06-20T21:36:54Z) - Inferring the time-varying coupling of dynamical systems with temporal convolutional autoencoders [0.0]
因果推論のためのテンポラルオートエンコーダ(TACI)を紹介する。
TACIは、2つの頭を持つ新しい機械学習アーキテクチャと因果関係を評価するために、新しい代理データメトリクスを組み合わせる。
TACIが様々なシステム間で動的因果相互作用を正確に定量化できることを実証する。
論文 参考訳(メタデータ) (2024-06-05T12:51:20Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - LINOCS: Lookahead Inference of Networked Operators for Continuous Stability [4.508868068781057]
連続安定のためのネットワーク演算子のルックアヘッド駆動推論(LINOCS)を導入する。
LINOCSはノイズの多い時系列データに隠れた動的相互作用を識別するための頑健な学習手法である。
我々は、LINOCSの合成時系列データに基づく基底真理力学演算子を復元する能力を実証する。
論文 参考訳(メタデータ) (2024-04-28T18:16:58Z) - Causal Graph ODE: Continuous Treatment Effect Modeling in Multi-agent
Dynamical Systems [70.84976977950075]
実世界のマルチエージェントシステムは、しばしば動的で連続的であり、エージェントは時間とともにその軌道や相互作用を共進化させ、変化させる。
本稿では,グラフニューラルネットワーク(GNN)をODE関数として,エージェント間の連続的な相互作用をキャプチャする新しいモデルを提案する。
我々のモデルの主な革新は、治療の時間依存表現を学習し、ODE関数にそれらを組み込むことで、潜在的な結果の正確な予測を可能にすることである。
論文 参考訳(メタデータ) (2024-02-29T23:07:07Z) - Diffusion model for relational inference [2.83334745695045]
観測可能な力学を持つシステムに対する金融価格モデルを提案する。
DiffRIは条件拡散モデルを用いて、コンポーネント間の接続の確率を推測する。
論文 参考訳(メタデータ) (2024-01-30T05:25:02Z) - Inferring Relational Potentials in Interacting Systems [56.498417950856904]
このような相互作用を発見する代替手法として、ニューラル・インタラクション・推論(NIIP)を提案する。
NIIPは観測された関係制約を尊重する軌道のサブセットに低エネルギーを割り当てる。
別々に訓練されたモデル間での相互作用の型を交換するなどの軌道操作や、軌道予測を可能にする。
論文 参考訳(メタデータ) (2023-10-23T00:44:17Z) - Learning Interaction Variables and Kernels from Observations of
Agent-Based Systems [14.240266845551488]
本稿では,エージェントの軌道に沿った状態や速度の観測を前提として,相互作用カーネルが依存する変数と相互作用カーネル自体を両立させる学習手法を提案する。
これにより、高次元観測データから次元性の呪いを避ける効果的な次元削減が得られる。
我々は,本手法の学習能力を,様々な一階対話システムに示す。
論文 参考訳(メタデータ) (2022-08-04T16:31:01Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
マルチエージェント模倣学習は、観察と行動のマッピングを学習することで、デモからタスクを実行するために複数のエージェントを訓練することを目的としている。
本稿では,確率変数間の依存を捉える強力な統計ツールである copula を用いて,マルチエージェントシステムにおける相関関係と協調関係を明示的にモデル化する。
提案モデルでは,各エージェントの局所的行動パターンと,エージェント間の依存構造のみをフルにキャプチャするコプラ関数を別々に学習することができる。
論文 参考訳(メタデータ) (2021-07-10T03:49:41Z) - Causal Discovery in Physical Systems from Videos [123.79211190669821]
因果発見は人間の認知の中心にある。
本研究では,ビデオの因果発見の課題を,地層構造を監督せずにエンドツーエンドで検討する。
論文 参考訳(メタデータ) (2020-07-01T17:29:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。