論文の概要: AAPM DL-Sparse-View CT Challenge Submission Report: Designing an
Iterative Network for Fanbeam-CT with Unknown Geometry
- arxiv url: http://arxiv.org/abs/2106.00280v1
- Date: Tue, 1 Jun 2021 07:20:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-02 23:34:19.908404
- Title: AAPM DL-Sparse-View CT Challenge Submission Report: Designing an
Iterative Network for Fanbeam-CT with Unknown Geometry
- Title(参考訳): AAPM DL-Sparse-View CT Challenge Submission Report: Designing a Iterative Network for Fanbeam-CT with unknown Geometry
- Authors: Martin Genzel, Jan Macdonald, Maximilian M\"arz
- Abstract要約: 我々はAAPM DL-Sparse-View CT Challenge(チーム名:robust-and-stable)に貢献する。
この課題は,データ駆動再建技術を用いて,限られたビューファンビーム測定から乳房モデルファントム画像の復元を行うことである。
- 参考スコア(独自算出の注目度): 5.8010446129208155
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This report is dedicated to a short motivation and description of our
contribution to the AAPM DL-Sparse-View CT Challenge (team name:
"robust-and-stable"). The task is to recover breast model phantom images from
limited view fanbeam measurements using data-driven reconstruction techniques.
The challenge is distinctive in the sense that participants are provided with a
collection of ground truth images and their noiseless, subsampled sinograms (as
well as the associated limited view filtered backprojection images), but not
with the actual forward model. Therefore, our approach first estimates the
fanbeam geometry in a data-driven geometric calibration step. In a subsequent
two-step procedure, we design an iterative end-to-end network that enables the
computation of near-exact solutions.
- Abstract(参考訳): 本報告は、AAPM DL-Sparse-View CT Challenge(チーム名「robust-and-stable」)への私たちの貢献の短い動機と説明に捧げるものである。
データ駆動再建技術を用いて,限られたビューファンビーム測定から乳房モデルファントム画像の復元を行う。
この課題は、参加者が基底真理画像のコレクションと、ノイズのないサブサンプリングされたシンノグラム(および関連する限定ビューフィルターされたバックプロジェクション画像)を提供するが、実際のフォワードモデルでは提供されないという意味で特徴的である。
そこで,本手法では,まずファンビーム形状をデータ駆動幾何キャリブレーションステップで推定する。
その後の2段階の手順で、ほぼ正確な解の計算を可能にする反復的なエンドツーエンドネットワークを設計する。
関連論文リスト
- Self-supervised 3D Point Cloud Completion via Multi-view Adversarial Learning [61.14132533712537]
我々は、オブジェクトレベルとカテゴリ固有の幾何学的類似性の両方を効果的に活用するフレームワークであるMAL-SPCを提案する。
私たちのMAL-SPCは3Dの完全な監視を一切必要とせず、各オブジェクトに1つの部分点クラウドを必要とするだけです。
論文 参考訳(メタデータ) (2024-07-13T06:53:39Z) - CoCPF: Coordinate-based Continuous Projection Field for Ill-Posed Inverse Problem in Imaging [78.734927709231]
スパース・ビュー・コンピュート・トモグラフィー(SVCT)の再構成は,スパース・サンプリングによるCT画像の取得を目的としている。
暗黙的な神経表現(INR)技術は、不備のため、その分野に「かなりの穴」(すなわち、未モデル化空間)を残し、準最適結果をもたらす可能性がある。
SVCT再構成のためのホールフリー表現場を構築することを目的としたコーディネート型連続射影場(CoCPF)を提案する。
論文 参考訳(メタデータ) (2024-06-21T08:38:30Z) - Diffeomorphic Template Registration for Atmospheric Turbulence Mitigation [50.16004183320537]
大気の乱流により劣化した画像の集合体に基づく放射能の回復法について述べる。
画像の1つを参照として選択し、その画像から他の画像への光フローの集約により、この画像の変形をモデル化する。
単純さに拘わらず、最先端のパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2024-05-06T17:39:53Z) - RecDiffusion: Rectangling for Image Stitching with Diffusion Models [53.824503710254206]
画像縫合整形のための新しい拡散学習フレームワーク textbfRecDiffusion を提案する。
このフレームワークは運動拡散モデル(MDM)を組み合わせて運動場を生成し、縫合された画像の不規則な境界から幾何学的に修正された中間体へ効果的に遷移する。
論文 参考訳(メタデータ) (2024-03-28T06:22:45Z) - APRF: Anti-Aliasing Projection Representation Field for Inverse Problem
in Imaging [74.9262846410559]
Sparse-view Computed Tomography (SVCT) は画像の逆問題である。
近年の研究では、インプリシット・ニューラル・リ表現(INR)を用いて、シングラムとCT画像の座標に基づくマッピングを構築している。
自己教師型SVCT再構成法の提案 -抗エイリアス射影表現場(APRF)-
APRFは空間的制約によって隣接する投影ビュー間の連続的な表現を構築することができる。
論文 参考訳(メタデータ) (2023-07-11T14:04:12Z) - Generative Modeling in Sinogram Domain for Sparse-view CT Reconstruction [12.932897771104825]
CT検査では投射回数を直感的に減らすことで放射線線量を大幅に減少させることができる。
疎視データを用いた従来のディープラーニング技術では、教師付き方法でネットワークをトレーニングするためにスパースビュー/フルビューCTイメージペアが必要である。
スパース・ビューCT再構成のための非教師なしスコアベース生成モデルについて検討した。
論文 参考訳(メタデータ) (2022-11-25T06:49:18Z) - Masked Sinogram Model with Transformer for ill-Posed Computed Tomography
Reconstruction: a Preliminary Study [0.9023847175654602]
自然言語処理におけるトランスフォーマーの成功に触発されて,この研究の中心となる考え方は,トモグラフィーの投影を単語トークンとして考えることである。
我々は、CT再構成を含む下流の様々なアプリケーションに対して、マスク付きシノグラムモデル(MSM)とファインチューンMSMをトレーニングすることで、基礎モデルのアイデアを探求する。
論文 参考訳(メタデータ) (2022-09-03T08:00:04Z) - REGAS: REspiratory-GAted Synthesis of Views for Multi-Phase CBCT
Reconstruction from a single 3D CBCT Acquisition [75.64791080418162]
REGASは、アンダーサンプドトモグラフィビューを合成し、再構成画像中のアーティファクトのエイリアスを緩和する自己教師手法を提案する。
高解像度4Dデータ上でのディープニューラルネットワークの大規模なメモリコストに対処するため、REGASは分散して微分可能なフォワードプロジェクションを可能にする新しいレイパス変換(RPT)を導入した。
論文 参考訳(メタデータ) (2022-08-17T03:42:19Z) - Near-Exact Recovery for Tomographic Inverse Problems via Deep Learning [3.441021278275805]
本稿では,反復的なエンドツーエンドネットワーク方式により,数値的精度に近い再構成が可能となることを示す。
また、オープンアクセスの実世界のデータセットLoDoPaB CT上で、最先端のパフォーマンスを実証する。
論文 参考訳(メタデータ) (2022-06-14T10:06:41Z) - Visual SLAM with Graph-Cut Optimized Multi-Plane Reconstruction [11.215334675788952]
本稿では,インスタンス平面セグメンテーションネットワークからのキューを用いたポーズ推定とマッピングを改善する意味平面SLAMシステムを提案する。
メインストリームのアプローチはRGB-Dセンサーを使用するが、そのようなシステムを備えた単眼カメラを使うことは、ロバストデータアソシエーションや正確な幾何モデルフィッティングといった課題に直面している。
論文 参考訳(メタデータ) (2021-08-09T18:16:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。