論文の概要: Masked Sinogram Model with Transformer for ill-Posed Computed Tomography
Reconstruction: a Preliminary Study
- arxiv url: http://arxiv.org/abs/2209.01356v1
- Date: Sat, 3 Sep 2022 08:00:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-07 13:21:18.089659
- Title: Masked Sinogram Model with Transformer for ill-Posed Computed Tomography
Reconstruction: a Preliminary Study
- Title(参考訳): 不正CT画像再構成のためのトランスを用いたマスケシングラムモデル : 予備的検討
- Authors: Zhengchun Liu, Rajkumar Kettimuthu, Ian Foster
- Abstract要約: 自然言語処理におけるトランスフォーマーの成功に触発されて,この研究の中心となる考え方は,トモグラフィーの投影を単語トークンとして考えることである。
我々は、CT再構成を含む下流の様々なアプリケーションに対して、マスク付きシノグラムモデル(MSM)とファインチューンMSMをトレーニングすることで、基礎モデルのアイデアを探求する。
- 参考スコア(独自算出の注目度): 0.9023847175654602
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computed Tomography (CT) is an imaging technique where information about an
object are collected at different angles (called projections or scans). Then
the cross-sectional image showing the internal structure of the slice is
produced by solving an inverse problem. Limited by certain factors such as
radiation dosage, projection angles, the produced images can be noisy or
contain artifacts. Inspired by the success of transformer for natural language
processing, the core idea of this preliminary study is to consider a projection
of tomography as a word token, and the whole scan of the cross-section (A.K.A.
sinogram) as a sentence in the context of natural language processing. Then we
explore the idea of foundation model by training a masked sinogram model (MSM)
and fine-tune MSM for various downstream applications including CT
reconstruction under data collections restriction (e.g., photon-budget) and a
data-driven solution to approximate solutions of the inverse problem for CT
reconstruction. Models and data used in this study are available at
https://github.com/lzhengchun/TomoTx.
- Abstract(参考訳): CT(Computed Tomography)は、物体に関する情報を異なる角度(投影または走査と呼ばれる)で収集するイメージング技術である。
そして、逆問題を解くことにより、スライスの内部構造を示す断面画像を生成する。
放射線量、投影角などの特定の要因によって制限され、生成した画像はうるさく、あるいは人工物を含むことができる。
自然言語処理におけるtransformerの成功にインスパイアされたこの予備研究の核となるアイデアは、トモグラフィーの投影を単語のトークンとして、横断断面(sinogram)の全体スキャンを自然言語処理の文脈で文として考えることである。
データ収集制限下でのCT再構成(例: Photon-Budget)や、CT再構成における逆問題の解を近似するデータ駆動解など、様々な下流アプリケーションのためのマスク付きシングラムモデル(MSM)とファインチューンMSMを訓練することにより、基礎モデルのアイデアを探求する。
この研究で使用されたモデルとデータはhttps://github.com/lzhengchun/TomoTx.comで公開されている。
関連論文リスト
- CT-SDM: A Sampling Diffusion Model for Sparse-View CT Reconstruction across All Sampling Rates [16.985836345715963]
Sparse view X-ray Computed tomography は放射線線量減少を緩和する現代的手法として登場した。
深層学習を用いた最近の研究は, Sparse-View Computed Tomography (SVCT) のアーティファクトの除去に有望な進展をもたらした。
本研究では,任意のサンプリングレートで高性能SVCT再構成を実現するための適応的再構成手法を提案する。
論文 参考訳(メタデータ) (2024-09-03T03:06:15Z) - CoCPF: Coordinate-based Continuous Projection Field for Ill-Posed Inverse Problem in Imaging [78.734927709231]
スパース・ビュー・コンピュート・トモグラフィー(SVCT)の再構成は,スパース・サンプリングによるCT画像の取得を目的としている。
暗黙的な神経表現(INR)技術は、不備のため、その分野に「かなりの穴」(すなわち、未モデル化空間)を残し、準最適結果をもたらす可能性がある。
SVCT再構成のためのホールフリー表現場を構築することを目的としたコーディネート型連続射影場(CoCPF)を提案する。
論文 参考訳(メタデータ) (2024-06-21T08:38:30Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
本研究は、3Dラジオグラフィ画像のための効果的な事前学習フレームワークの設計に焦点をあてる。
ローカルマスキングと低レベルの摂動の組み合わせによって生成された破壊から、オリジナルのイメージを再構築しようとする事前トレーニングフレームワークであるDisruptive Autoencodersを紹介する。
提案する事前トレーニングフレームワークは、複数のダウンストリームタスクでテストされ、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-07-31T17:59:42Z) - APRF: Anti-Aliasing Projection Representation Field for Inverse Problem
in Imaging [74.9262846410559]
Sparse-view Computed Tomography (SVCT) は画像の逆問題である。
近年の研究では、インプリシット・ニューラル・リ表現(INR)を用いて、シングラムとCT画像の座標に基づくマッピングを構築している。
自己教師型SVCT再構成法の提案 -抗エイリアス射影表現場(APRF)-
APRFは空間的制約によって隣接する投影ビュー間の連続的な表現を構築することができる。
論文 参考訳(メタデータ) (2023-07-11T14:04:12Z) - Geometric Constraints Enable Self-Supervised Sinogram Inpainting in
Sparse-View Tomography [7.416898042520079]
スパース角度トモグラフィースキャンは放射線を低減し、データ取得を加速するが、画像のアーチファクトやノイズに悩まされる。
既存の画像処理アルゴリズムはCT再構成の品質を復元することができるが、大きなトレーニングデータセットを必要とする場合が多い。
本研究は、勾配に基づく最適化により、欠落した射影ビューを最適化する自己教師付きプロジェクションインペインティング法を提案する。
論文 参考訳(メタデータ) (2023-02-13T15:15:18Z) - Orientation-Shared Convolution Representation for CT Metal Artifact
Learning [63.67718355820655]
X線CT(CT)スキャン中、患者を乗せた金属インプラントは、しばしば有害なアーティファクトに繋がる。
既存のディープラーニングベースの手法は、有望な再構築性能を得た。
本稿では,人工物の物理的事前構造に適応するために,配向型畳み込み表現戦略を提案する。
論文 参考訳(メタデータ) (2022-12-26T13:56:12Z) - Generative Modeling in Sinogram Domain for Sparse-view CT Reconstruction [12.932897771104825]
CT検査では投射回数を直感的に減らすことで放射線線量を大幅に減少させることができる。
疎視データを用いた従来のディープラーニング技術では、教師付き方法でネットワークをトレーニングするためにスパースビュー/フルビューCTイメージペアが必要である。
スパース・ビューCT再構成のための非教師なしスコアベース生成モデルについて検討した。
論文 参考訳(メタデータ) (2022-11-25T06:49:18Z) - DuDoTrans: Dual-Domain Transformer Provides More Attention for Sinogram
Restoration in Sparse-View CT Reconstruction [13.358197688568463]
撮像過程におけるヨウ素の放射線は 不可逆的な損傷を引き起こす
スパースビューCT画像に現れるアーティファクトを緩和する反復モデルが提案されているが,コストが高すぎる。
textbfDual-textbfDomain textbfDuDoTransを提案する。
論文 参考訳(メタデータ) (2021-11-21T10:41:07Z) - XraySyn: Realistic View Synthesis From a Single Radiograph Through CT
Priors [118.27130593216096]
放射線写真は、X線を用いて患者の内部解剖を視覚化し、3D情報を2次元平面に投影する。
私たちの知る限りでは、ラジオグラフィビューの合成に関する最初の研究である。
本手法は,3次元空間におけるX線撮影の理解を得ることにより,地中骨ラベルを使わずに,X線撮影による骨抽出と骨抑制に応用できることが示唆された。
論文 参考訳(メタデータ) (2020-12-04T05:08:53Z) - Deep Sinogram Completion with Image Prior for Metal Artifact Reduction
in CT Images [29.019325663195627]
CTは, 診断, 評価, 治療計画, 指導に広く用いられている。
CT画像は金属の物体の存在に悪影響を及ぼし、重金属の破片につながる可能性がある。
本稿では, 画像領域とシノグラム領域に基づくMAR技術の利点を同時に活用して, 金属アーティファクト低減(MAR)の一般化可能なフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-16T04:43:35Z) - Data Consistent CT Reconstruction from Insufficient Data with Learned
Prior Images [70.13735569016752]
偽陰性病変と偽陽性病変を呈示し,CT画像再構成における深層学習の堅牢性について検討した。
本稿では,圧縮センシングと深層学習の利点を組み合わせた画像品質向上のためのデータ一貫性再構築手法を提案する。
提案手法の有効性は,円錐ビームCTにおいて,トランキャットデータ,リミテッドアングルデータ,スパースビューデータで示される。
論文 参考訳(メタデータ) (2020-05-20T13:30:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。