Sequential Domain Adaptation by Synthesizing Distributionally Robust
Experts
- URL: http://arxiv.org/abs/2106.00322v1
- Date: Tue, 1 Jun 2021 08:51:55 GMT
- Title: Sequential Domain Adaptation by Synthesizing Distributionally Robust
Experts
- Authors: Bahar Taskesen, Man-Chung Yue, Jose Blanchet, Daniel Kuhn, Viet Anh
Nguyen
- Abstract summary: Supervised domain adaptation aims to improve the predictive accuracy by exploiting additional labeled training samples from a source distribution close to the target distribution.
We use the Bernstein online aggregation algorithm on the proposed family of robust experts to generate predictions for the sequential stream of target samples.
- Score: 14.656957226255628
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Least squares estimators, when trained on a few target domain samples, may
predict poorly. Supervised domain adaptation aims to improve the predictive
accuracy by exploiting additional labeled training samples from a source
distribution that is close to the target distribution. Given available data, we
investigate novel strategies to synthesize a family of least squares estimator
experts that are robust with regard to moment conditions. When these moment
conditions are specified using Kullback-Leibler or Wasserstein-type
divergences, we can find the robust estimators efficiently using convex
optimization. We use the Bernstein online aggregation algorithm on the proposed
family of robust experts to generate predictions for the sequential stream of
target test samples. Numerical experiments on real data show that the robust
strategies may outperform non-robust interpolations of the empirical least
squares estimators.
Related papers
- Optimizing Probabilistic Conformal Prediction with Vectorized Non-Conformity Scores [6.059745771017814]
We propose a novel framework that enhances efficiency by first vectorizing the non-conformity scores with ranked samples and then optimizing the shape of the prediction set by varying the quantiles for samples at the same rank.
Our method delivers valid coverage while producing discontinuous and more efficient prediction sets, making it particularly suited for high-stakes applications.
arXiv Detail & Related papers (2024-10-17T16:37:03Z) - Distributionally Robust Optimization as a Scalable Framework to Characterize Extreme Value Distributions [22.765095010254118]
The goal of this paper is to develop distributionally robust optimization (DRO) estimators, specifically for multidimensional Extreme Value Theory (EVT) statistics.
In order to mitigate over-conservative estimates while enhancing out-of-sample performance, we study DRO estimators informed by semi-parametric max-stable constraints in the space of point processes.
Both approaches are validated using synthetically generated data, recovering prescribed characteristics, and verifying the efficacy of the proposed techniques.
arXiv Detail & Related papers (2024-07-31T19:45:27Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - Rejection via Learning Density Ratios [50.91522897152437]
Classification with rejection emerges as a learning paradigm which allows models to abstain from making predictions.
We propose a different distributional perspective, where we seek to find an idealized data distribution which maximizes a pretrained model's performance.
Our framework is tested empirically over clean and noisy datasets.
arXiv Detail & Related papers (2024-05-29T01:32:17Z) - Variational Inference with Coverage Guarantees in Simulation-Based Inference [18.818573945984873]
We propose Conformalized Amortized Neural Variational Inference (CANVI)
CANVI constructs conformalized predictors based on each candidate, compares the predictors using a metric known as predictive efficiency, and returns the most efficient predictor.
We prove lower bounds on the predictive efficiency of the regions produced by CANVI and explore how the quality of a posterior approximation relates to the predictive efficiency of prediction regions based on that approximation.
arXiv Detail & Related papers (2023-05-23T17:24:04Z) - Learning Structured Gaussians to Approximate Deep Ensembles [10.055143995729415]
This paper proposes using a sparse-structured multivariate Gaussian to provide a closed-form approxorimator for dense image prediction tasks.
We capture the uncertainty and structured correlations in the predictions explicitly in a formal distribution, rather than implicitly through sampling alone.
We demonstrate the merits of our approach on monocular depth estimation and show that the advantages of our approach are obtained with comparable quantitative performance.
arXiv Detail & Related papers (2022-03-29T12:34:43Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
Even simple methods like least squares can exhibit non-normal behavior when data is collected in an adaptive manner.
We propose a family of online debiasing estimators to correct these distributional anomalies in at least squares estimation.
We demonstrate the usefulness of our theory via applications to multi-armed bandit, autoregressive time series estimation, and active learning with exploration.
arXiv Detail & Related papers (2021-07-05T21:05:11Z) - Distributionally Robust Local Non-parametric Conditional Estimation [22.423052432220235]
We propose a new distributionally robust estimator that generates non-parametric local estimates.
We show that despite being generally intractable, the local estimator can be efficiently found via convex optimization.
Experiments with synthetic and MNIST datasets show the competitive performance of this new class of estimators.
arXiv Detail & Related papers (2020-10-12T00:11:17Z) - Uncertainty Estimation and Sample Selection for Crowd Counting [87.29137075538213]
We present a method for image-based crowd counting that can predict a crowd density map together with the uncertainty values pertaining to the predicted density map.
A key advantage of our method over existing crowd counting methods is its ability to quantify the uncertainty of its predictions.
We show that our sample selection strategy drastically reduces the amount of labeled data needed to adapt a counting network trained on a source domain to the target domain.
arXiv Detail & Related papers (2020-09-30T03:40:07Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Nonparametric Score Estimators [49.42469547970041]
Estimating the score from a set of samples generated by an unknown distribution is a fundamental task in inference and learning of probabilistic models.
We provide a unifying view of these estimators under the framework of regularized nonparametric regression.
We propose score estimators based on iterative regularization that enjoy computational benefits from curl-free kernels and fast convergence.
arXiv Detail & Related papers (2020-05-20T15:01:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.