論文の概要: Logistic Regression Through the Veil of Imprecise Data
- arxiv url: http://arxiv.org/abs/2106.00492v1
- Date: Tue, 1 Jun 2021 13:51:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-02 14:09:26.306083
- Title: Logistic Regression Through the Veil of Imprecise Data
- Title(参考訳): 不正確なデータのベールによるロジスティック回帰
- Authors: Nicholas Gray and Scott Ferson
- Abstract要約: ロジスティック回帰は、いくつかの予測変数に基づいて結果の確率を評価する重要な統計ツールである。
標準的な手法は、正確に知られているデータのみを扱うことができるが、多くのデータセットには、従来の手法が単一ポイントに縮小するか、完全に無視されるかの不確実性がある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Logistic regression is an important statistical tool for assessing the
probability of an outcome based upon some predictive variables. Standard
methods can only deal with precisely known data, however many datasets have
uncertainties which traditional methods either reduce to a single point or
completely disregarded. In this paper we show that it is possible to include
these uncertainties by considering an imprecise logistic regression model using
the set of possible models that can be obtained from values from within the
intervals. This has the advantage of clearly expressing the epistemic
uncertainty removed by traditional methods.
- Abstract(参考訳): ロジスティック回帰は、いくつかの予測変数に基づいて結果の確率を評価する重要な統計ツールである。
標準的な手法は、正確に知られているデータのみを扱うことができるが、多くのデータセットには、従来の手法が単一ポイントに縮小するか、完全に無視されるかの不確実性がある。
本稿では,区間内の値から得られる可能性のあるモデルの集合を用いて,不正確なロジスティック回帰モデルを考えることで,これらの不確実性を含めることができることを示す。
これは従来の方法によって取り除かれたてんかんの不確実性を明確に表現する利点がある。
関連論文リスト
- Beyond the Norms: Detecting Prediction Errors in Regression Models [26.178065248948773]
本稿では,回帰アルゴリズムにおける信頼できない振る舞いを検出するという課題に取り組む。
回帰器の出力が特定の不一致(または誤り)を超えた場合、回帰における不確実性の概念を導入する。
複数の回帰タスクに対する誤り検出の実証的改善を示す。
論文 参考訳(メタデータ) (2024-06-11T05:51:44Z) - Statistical Agnostic Regression: a machine learning method to validate regression models [0.0]
本稿では,機械学習に基づく線形回帰モデルの統計的意義を評価するために,統計的回帰(Agnostic Regression, SAR)を導入する。
我々は、説明的(機能)変数と反応(ラベル)変数の間の集団における線形関係の存在を結論付けるために、少なくとも1-eta$の確率で十分な証拠が存在することを保証するしきい値を定義する。
論文 参考訳(メタデータ) (2024-02-23T09:19:26Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
本研究では,所定の点における条件分散の値に関する仮説を検証し,留置手順を開発する。
既存の手法とは異なり、提案手法は分散自体の値だけでなく、対応する分散予測器の不確実性についても考慮することができる。
論文 参考訳(メタデータ) (2023-09-28T13:04:11Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
本稿では,データあいまいさの予測不確実性を推定するためのポストホックサンプリング手法を提案する。
この方法は与えられた入力に対して異なる可算出力を生成することができ、予測分布のパラメトリック形式を仮定しない。
論文 参考訳(メタデータ) (2023-08-03T12:43:21Z) - The Implicit Delta Method [61.36121543728134]
本稿では,不確実性のトレーニング損失を無限に正規化することで機能する,暗黙のデルタ法を提案する。
有限差分により無限小変化が近似された場合でも, 正則化による評価の変化は評価推定器の分散に一定であることを示す。
論文 参考訳(メタデータ) (2022-11-11T19:34:17Z) - Prediction Intervals and Confidence Regions for Symbolic Regression
Models based on Likelihood Profiles [0.0]
回帰モデルの不確実性の定量化は、モデルの解釈と意思決定にとって重要である。
線形近似といわゆる確率プロファイルは、信頼度と予測間隔の計算においてよく知られた可能性である。
これらの単純で効果的な手法は、遺伝子プログラミングの文献で完全に無視されている。
論文 参考訳(メタデータ) (2022-09-14T07:07:55Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
本稿では,不備な値を含む入力からの推論をインプットなしでトレーニングするIGSGD法の重要性について紹介する。
バックプロパゲーションによるモデルのトレーニングに使用する勾配の調整には強化学習(RL)を用いる。
我々の計算自由予測は、最先端の計算手法を用いて従来の2段階の計算自由予測よりも優れている。
論文 参考訳(メタデータ) (2021-07-05T12:44:39Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
階層型モデル選択は、推定困難のため、ディープラーニングではほとんど使われない。
本研究は,検証データが利用できない場合,限界的可能性によって一般化が向上し,有用であることを示す。
論文 参考訳(メタデータ) (2021-04-11T09:50:24Z) - Learning Probabilistic Ordinal Embeddings for Uncertainty-Aware
Regression [91.3373131262391]
不確かさが唯一の確実性である。
伝統的に、直接回帰定式化を考慮し、ある確率分布の族に出力空間を変更することによって不確実性をモデル化する。
現在のレグレッション技術における不確実性をモデル化する方法は、未解決の問題である。
論文 参考訳(メタデータ) (2021-03-25T06:56:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。