論文の概要: A Novel Graph-Theoretic Deep Representation Learning Method for
Multi-Label Remote Sensing Image Retrieval
- arxiv url: http://arxiv.org/abs/2106.00506v1
- Date: Tue, 1 Jun 2021 14:11:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-02 18:45:12.334522
- Title: A Novel Graph-Theoretic Deep Representation Learning Method for
Multi-Label Remote Sensing Image Retrieval
- Title(参考訳): マルチラベルリモートセンシング画像検索のためのグラフ理論的深部表現学習法
- Authors: Gencer Sumbul and Beg\"um Demir
- Abstract要約: 本稿では,マルチラベルリモートセンシング(RS)画像検索の枠組みにおけるグラフ理論の深層表現学習手法を提案する。
提案手法は,アーカイブ内の各RS画像に関連付けられた複数ラベルの共起関係を抽出し,活用することを目的としている。
提案手法のコードはhttps://git.tu-berlin.de/rsim/GT-DRL-CBIRで公開されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel graph-theoretic deep representation learning
method in the framework of multi-label remote sensing (RS) image retrieval
problems. The proposed method aims to extract and exploit multi-label
co-occurrence relationships associated to each RS image in the archive. To this
end, each training image is initially represented with a graph structure that
provides region-based image representation combining both local information and
the related spatial organization. Unlike the other graph-based methods, the
proposed method contains a novel learning strategy to train a deep neural
network for automatically predicting a graph structure of each RS image in the
archive. This strategy employs a region representation learning loss function
to characterize the image content based on its multi-label co-occurrence
relationship. Experimental results show the effectiveness of the proposed
method for retrieval problems in RS compared to state-of-the-art deep
representation learning methods. The code of the proposed method is publicly
available at https://git.tu-berlin.de/rsim/GT-DRL-CBIR .
- Abstract(参考訳): 本稿では,多層リモートセンシング(rs)画像検索問題におけるグラフ理論的深層表現学習手法を提案する。
提案手法は,アーカイブ内の各RS画像に関連する複数ラベルの共起関係を抽出し,活用することを目的としている。
この目的のために、各トレーニング画像は、まず、局所情報と関連する空間構造の両方を組み合わせた地域ベースの画像表現を提供するグラフ構造で表現される。
他のグラフベース手法とは異なり、提案手法は、アーカイブ内の各RS画像のグラフ構造を自動的に予測するディープニューラルネットワークをトレーニングするための新しい学習戦略を含む。
この戦略は、領域表現学習損失関数を用いて、そのマルチラベル共起関係に基づいて画像コンテンツを特徴付ける。
実験により,RSにおける検索問題に対する提案手法の有効性を,最先端の深層表現学習法と比較した。
提案手法のコードはhttps://git.tu-berlin.de/rsim/GT-DRL-CBIR で公開されている。
関連論文リスト
- Breaking the Frame: Image Retrieval by Visual Overlap Prediction [53.17564423756082]
本稿では,隠蔽や複雑なシーンを効果的に扱う新しい視覚的位置認識手法,VOPを提案する。
提案手法は,高コストな特徴検出とマッチングを必要とせず,可視画像区間の識別を可能にする。
論文 参考訳(メタデータ) (2024-06-23T20:00:20Z) - CricaVPR: Cross-image Correlation-aware Representation Learning for Visual Place Recognition [73.51329037954866]
視覚的位置認識のための画像間相関認識を用いたロバストなグローバル表現手法を提案する。
本手法では,バッチ内の複数の画像の相関にアテンション機構を用いる。
本手法は,訓練時間を大幅に短縮し,最先端の手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-02-29T15:05:11Z) - Training-free Zero-shot Composed Image Retrieval with Local Concept Reranking [34.31345844296072]
合成画像検索は、参照画像と対応する修正テキストの合成クエリを通して、ギャラリー画像から興味のある画像を検索しようとする。
現在の構成画像検索手法の多くは、参照画像、修正テキスト、対応するターゲット画像からなるコストのかかる3重化データセットのトレーニングに対する教師付き学習アプローチに従っている。
そこで本研究では,学習不要なゼロショット合成画像検索手法を提案する。
論文 参考訳(メタデータ) (2023-12-14T13:31:01Z) - Patch-Wise Self-Supervised Visual Representation Learning: A Fine-Grained Approach [4.9204263448542465]
本研究は、パッチレベルの識別を自己教師付き視覚表現学習に組み込むことにより、革新的できめ細かな次元を導入する。
それぞれのパッチは個別に拡張され、同じビュー内の他のパッチとは独立している。
我々は、拡張ビュー全体にわたって対応するパッチを見つけるための、単純で効果的なパッチマッチングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-28T09:35:30Z) - Masked Contrastive Graph Representation Learning for Age Estimation [44.96502862249276]
本稿では,画像冗長性情報を扱う上で,グラフ表現学習の特性を利用する。
年齢推定のためのMasked Contrastive Graph Representation Learning (MCGRL)法を提案する。
実世界の顔画像データセットに対する実験結果から,提案手法が他の最先端の年齢推定手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-06-16T15:53:21Z) - Learning Self-Supervised Representations for Label Efficient
Cross-Domain Knowledge Transfer on Diabetic Retinopathy Fundus Images [2.796274924103132]
本研究は,糖尿病網膜症 (DR) 画像をドメイン横断設定で分類するための,自己教師付き表現学習に基づく新しいアプローチを提案する。
提案手法は,クロスドメイン設定においても,DR画像の2値化と多値化の最先端化を実現する。
論文 参考訳(メタデータ) (2023-04-20T12:46:34Z) - Learning Hierarchical Graph Representation for Image Manipulation
Detection [50.04902159383709]
画像操作検出の目的は、画像内の操作された領域を特定し、特定することである。
最近のアプローチでは、画像に残っている改ざんするアーティファクトをキャプチャするために、洗練された畳み込みニューラルネットワーク(CNN)が採用されている。
本稿では2つの並列分岐からなる階層型グラフ畳み込みネットワーク(HGCN-Net)を提案する。
論文 参考訳(メタデータ) (2022-01-15T01:54:25Z) - A Novel Triplet Sampling Method for Multi-Label Remote Sensing Image
Search and Retrieval [1.123376893295777]
計量空間を学ぶための一般的なアプローチは、類似した(正の)画像と異種(負の)画像の選択に依存する。
マルチラベルRS CBIR問題に対して定義されたディープニューラルネットワーク(DNNs)の枠組みにおける新しいトリプレットサンプリング法を提案する。
論文 参考訳(メタデータ) (2021-05-08T09:16:09Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
本稿では,複数のランダムアンカーグラフアンサンブル学習(RAGE)を用いた空間スペクトルHSI分類手法を提案する。
まず、各選択されたバンドのより記述的な特徴を抽出し、局所的な構造と領域の微妙な変化を保存するローカルバイナリパターンを採用する。
次に,アンカーグラフの構成に適応隣接代入を導入し,計算複雑性を低減した。
論文 参考訳(メタデータ) (2021-03-25T09:31:41Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z) - High-Order Information Matters: Learning Relation and Topology for
Occluded Person Re-Identification [84.43394420267794]
本稿では,高次関係とトポロジ情報を識別的特徴とロバストなアライメントのために学習し,新しい枠組みを提案する。
我々のフレームワークはOccluded-Dukeデータセットで最先端の6.5%mAPスコアを大幅に上回っている。
論文 参考訳(メタデータ) (2020-03-18T12:18:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。