Uncertainty Characteristics Curves: A Systematic Assessment of
Prediction Intervals
- URL: http://arxiv.org/abs/2106.00858v1
- Date: Tue, 1 Jun 2021 23:46:44 GMT
- Title: Uncertainty Characteristics Curves: A Systematic Assessment of
Prediction Intervals
- Authors: Jiri Navratil, Benjamin Elder, Matthew Arnold, Soumya Ghosh, Prasanna
Sattigeri
- Abstract summary: In regression tasks, uncertainty is typically quantified using prediction intervals calibrated to a specific operating point.
We propose a novel operating point assessment methodology for prediction intervals.
- Score: 19.463453475394758
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate quantification of model uncertainty has long been recognized as a
fundamental requirement for trusted AI. In regression tasks, uncertainty is
typically quantified using prediction intervals calibrated to a specific
operating point, making evaluation and comparison across different studies
difficult. Our work leverages: (1) the concept of operating characteristics
curves and (2) the notion of a gain over a simple reference, to derive a novel
operating point agnostic assessment methodology for prediction intervals. The
paper describes the corresponding algorithm, provides a theoretical analysis,
and demonstrates its utility in multiple scenarios. We argue that the proposed
method addresses the current need for comprehensive assessment of prediction
intervals and thus represents a valuable addition to the uncertainty
quantification toolbox.
Related papers
- Second-Order Uncertainty Quantification: Variance-Based Measures [2.3999111269325266]
This paper proposes a novel way to use variance-based measures to quantify uncertainty on the basis of second-order distributions in classification problems.
A distinctive feature of the measures is the ability to reason about uncertainties on a class-based level, which is useful in situations where nuanced decision-making is required.
arXiv Detail & Related papers (2023-12-30T16:30:52Z) - Assessment of Prediction Intervals Using Uncertainty Characteristics
Curves [18.283808848089333]
The paper defines the Uncertainty Characteristics Curve and demonstrates its utility in selected scenarios.
We argue that the proposed method addresses the current need for comprehensive assessment of prediction intervals.
arXiv Detail & Related papers (2023-10-04T20:54:08Z) - Probabilistic load forecasting with Reservoir Computing [10.214379018902914]
This work focuses on reservoir computing as the core time series forecasting method.
While the RC literature mostly focused on point forecasting, this work explores the compatibility of some popular uncertainty quantification methods with the reservoir setting.
arXiv Detail & Related papers (2023-08-24T15:07:08Z) - Regions of Reliability in the Evaluation of Multivariate Probabilistic
Forecasts [73.33395097728128]
We provide the first systematic finite-sample study of proper scoring rules for time-series forecasting evaluation.
We carry out our analysis on a comprehensive synthetic benchmark, specifically designed to test several key discrepancies between ground-truth and forecast distributions.
arXiv Detail & Related papers (2023-04-19T17:38:42Z) - The Implicit Delta Method [61.36121543728134]
In this paper, we propose an alternative, the implicit delta method, which works by infinitesimally regularizing the training loss of uncertainty.
We show that the change in the evaluation due to regularization is consistent for the variance of the evaluation estimator, even when the infinitesimal change is approximated by a finite difference.
arXiv Detail & Related papers (2022-11-11T19:34:17Z) - Uncertainty Quantification for Traffic Forecasting: A Unified Approach [21.556559649467328]
Uncertainty is an essential consideration for time series forecasting tasks.
In this work, we focus on quantifying the uncertainty of traffic forecasting.
We develop Deep S-Temporal Uncertainty Quantification (STUQ), which can estimate both aleatoric and relational uncertainty.
arXiv Detail & Related papers (2022-08-11T15:21:53Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
We describe two types of forecasting problems: regular grid-based and graph-based.
We analyze UQ methods from both the Bayesian and the frequentist point view, casting in a unified framework via statistical decision theory.
Through extensive experiments on real-world road network traffic, epidemics, and air quality forecasting tasks, we reveal the statistical computational trade-offs for different UQ methods.
arXiv Detail & Related papers (2021-05-25T14:35:46Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
Epistemic uncertainty is part of out-of-sample prediction error due to the lack of knowledge of the learner.
We propose a principled approach for directly estimating epistemic uncertainty by learning to predict generalization error and subtracting an estimate of aleatoric uncertainty.
arXiv Detail & Related papers (2021-02-16T23:50:35Z) - Evaluations and Methods for Explanation through Robustness Analysis [117.7235152610957]
We establish a novel set of evaluation criteria for such feature based explanations by analysis.
We obtain new explanations that are loosely necessary and sufficient for a prediction.
We extend the explanation to extract the set of features that would move the current prediction to a target class.
arXiv Detail & Related papers (2020-05-31T05:52:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.