Translational Symmetry-Aware Facade Parsing for 3D Building
Reconstruction
- URL: http://arxiv.org/abs/2106.00912v1
- Date: Wed, 2 Jun 2021 03:10:51 GMT
- Title: Translational Symmetry-Aware Facade Parsing for 3D Building
Reconstruction
- Authors: Hantang Liu, Wentong Li, Jianke Zhu
- Abstract summary: In this paper, we present a novel translational symmetry-based approach to improving the deep neural networks.
We propose a novel scheme to fuse anchor-free detection in a single stage network, which enables the efficient training and better convergence.
We employ an off-the-shelf rendering engine like Blender to reconstruct the realistic high-quality 3D models using procedural modeling.
- Score: 11.263458202880038
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Effectively parsing the facade is essential to 3D building reconstruction,
which is an important computer vision problem with a large amount of
applications in high precision map for navigation, computer aided design, and
city generation for digital entertainments. To this end, the key is how to
obtain the shape grammars from 2D images accurately and efficiently. Although
enjoying the merits of promising results on the semantic parsing, deep learning
methods cannot directly make use of the architectural rules, which play an
important role for man-made structures. In this paper, we present a novel
translational symmetry-based approach to improving the deep neural networks.
Our method employs deep learning models as the base parser, and a module taking
advantage of translational symmetry is used to refine the initial parsing
results. In contrast to conventional semantic segmentation or bounding box
prediction, we propose a novel scheme to fuse segmentation with anchor-free
detection in a single stage network, which enables the efficient training and
better convergence. After parsing the facades into shape grammars, we employ an
off-the-shelf rendering engine like Blender to reconstruct the realistic
high-quality 3D models using procedural modeling. We conduct experiments on
three public datasets, where our proposed approach outperforms the
state-of-the-art methods. In addition, we have illustrated the 3D building
models built from 2D facade images.
Related papers
- Large Spatial Model: End-to-end Unposed Images to Semantic 3D [79.94479633598102]
Large Spatial Model (LSM) processes unposed RGB images directly into semantic radiance fields.
LSM simultaneously estimates geometry, appearance, and semantics in a single feed-forward operation.
It can generate versatile label maps by interacting with language at novel viewpoints.
arXiv Detail & Related papers (2024-10-24T17:54:42Z) - 3D Face Reconstruction Using A Spectral-Based Graph Convolution Encoder [3.749406324648861]
We propose an innovative approach that integrates existing 2D features with 3D features to guide the model learning process.
Our model is trained using 2D-3D data pairs from a combination of datasets and achieves state-of-the-art performance on the NoW benchmark.
arXiv Detail & Related papers (2024-03-08T11:09:46Z) - PonderV2: Pave the Way for 3D Foundation Model with A Universal
Pre-training Paradigm [114.47216525866435]
We introduce a novel universal 3D pre-training framework designed to facilitate the acquisition of efficient 3D representation.
For the first time, PonderV2 achieves state-of-the-art performance on 11 indoor and outdoor benchmarks, implying its effectiveness.
arXiv Detail & Related papers (2023-10-12T17:59:57Z) - StructuredMesh: 3D Structured Optimization of Fa\c{c}ade Components on
Photogrammetric Mesh Models using Binary Integer Programming [17.985961236568663]
We present StructuredMesh, a novel approach for reconstructing faccade structures conforming to the regularity of buildings within photogrammetric mesh models.
Our method involves capturing multi-view color and depth images of the building model using a virtual camera.
We then utilize the depth image to remap these boxes into 3D space, generating an initial faccade layout.
arXiv Detail & Related papers (2023-06-07T06:40:54Z) - SSR-2D: Semantic 3D Scene Reconstruction from 2D Images [54.46126685716471]
In this work, we explore a central 3D scene modeling task, namely, semantic scene reconstruction without using any 3D annotations.
The key idea of our approach is to design a trainable model that employs both incomplete 3D reconstructions and their corresponding source RGB-D images.
Our method achieves the state-of-the-art performance of semantic scene completion on two large-scale benchmark datasets MatterPort3D and ScanNet.
arXiv Detail & Related papers (2023-02-07T17:47:52Z) - RiCS: A 2D Self-Occlusion Map for Harmonizing Volumetric Objects [68.85305626324694]
Ray-marching in Camera Space (RiCS) is a new method to represent the self-occlusions of foreground objects in 3D into a 2D self-occlusion map.
We show that our representation map not only allows us to enhance the image quality but also to model temporally coherent complex shadow effects.
arXiv Detail & Related papers (2022-05-14T05:35:35Z) - Fine Detailed Texture Learning for 3D Meshes with Generative Models [33.42114674602613]
This paper presents a method to reconstruct high-quality textured 3D models from both multi-view and single-view images.
In the first stage, we focus on learning accurate geometry, whereas in the second stage, we focus on learning the texture with a generative adversarial network.
We demonstrate that our method achieves superior 3D textured models compared to the previous works.
arXiv Detail & Related papers (2022-03-17T14:50:52Z) - Learnable Triangulation for Deep Learning-based 3D Reconstruction of
Objects of Arbitrary Topology from Single RGB Images [12.693545159861857]
We propose a novel deep reinforcement learning-based approach for 3D object reconstruction from monocular images.
The proposed method outperforms the state-of-the-art in terms of visual quality, reconstruction accuracy, and computational time.
arXiv Detail & Related papers (2021-09-24T09:44:22Z) - Using Adaptive Gradient for Texture Learning in Single-View 3D
Reconstruction [0.0]
Learning-based approaches for 3D model reconstruction have attracted attention owing to its modern applications.
We present a novel sampling algorithm by optimizing the gradient of predicted coordinates based on the variance on the sampling image.
We also adopt Frechet Inception Distance (FID) to form a loss function in learning, which helps bridging the gap between rendered images and input images.
arXiv Detail & Related papers (2021-04-29T07:52:54Z) - Self-Supervised 2D Image to 3D Shape Translation with Disentangled
Representations [92.89846887298852]
We present a framework to translate between 2D image views and 3D object shapes.
We propose SIST, a Self-supervised Image to Shape Translation framework.
arXiv Detail & Related papers (2020-03-22T22:44:02Z) - Learning 3D Human Shape and Pose from Dense Body Parts [117.46290013548533]
We propose a Decompose-and-aggregate Network (DaNet) to learn 3D human shape and pose from dense correspondences of body parts.
Messages from local streams are aggregated to enhance the robust prediction of the rotation-based poses.
Our method is validated on both indoor and real-world datasets including Human3.6M, UP3D, COCO, and 3DPW.
arXiv Detail & Related papers (2019-12-31T15:09:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.