論文の概要: OctoPath: An OcTree Based Self-Supervised Learning Approach to Local
Trajectory Planning for Mobile Robots
- arxiv url: http://arxiv.org/abs/2106.00988v1
- Date: Wed, 2 Jun 2021 07:10:54 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-04 05:52:00.124619
- Title: OctoPath: An OcTree Based Self-Supervised Learning Approach to Local
Trajectory Planning for Mobile Robots
- Title(参考訳): OctoPath: 移動ロボットの局所軌道計画へのOcTreeによる自己教師付き学習アプローチ
- Authors: Bogdan Trasnea, Cosmin Ginerica, Mihai Zaha, Gigel Macesanu, Claudiu
Pozna, Sorin Grigorescu
- Abstract要約: 我々は,エンコーダ・デコーダ・ディープニューラルネットワークであるOctoPathを導入し,エゴ車両の最適軌道を予測するための自己教師型訓練を行った。
トレーニング中、OctoPathは、所定のトレーニングデータセット内の予測と手動で駆動するトラジェクトリ間のエラーを最小限にする。
我々は,室内と屋外の異なる運転シナリオにおけるOctoPathの予測を,ベースラインハイブリッドA-Starアルゴリズムに対してベンチマークしながら評価した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous mobile robots are usually faced with challenging situations when
driving in complex environments. Namely, they have to recognize the static and
dynamic obstacles, plan the driving path and execute their motion. For
addressing the issue of perception and path planning, in this paper, we
introduce OctoPath , which is an encoder-decoder deep neural network, trained
in a self-supervised manner to predict the local optimal trajectory for the
ego-vehicle. Using the discretization provided by a 3D octree environment
model, our approach reformulates trajectory prediction as a classification
problem with a configurable resolution. During training, OctoPath minimizes the
error between the predicted and the manually driven trajectories in a given
training dataset. This allows us to avoid the pitfall of regression-based
trajectory estimation, in which there is an infinite state space for the output
trajectory points. Environment sensing is performed using a 40-channel
mechanical LiDAR sensor, fused with an inertial measurement unit and wheels
odometry for state estimation. The experiments are performed both in simulation
and real-life, using our own developed GridSim simulator and RovisLab's
Autonomous Mobile Test Unit platform. We evaluate the predictions of OctoPath
in different driving scenarios, both indoor and outdoor, while benchmarking our
system against a baseline hybrid A-Star algorithm and a regression-based
supervised learning method, as well as against a CNN learning-based optimal
path planning method.
- Abstract(参考訳): 自律移動ロボットは通常、複雑な環境で運転する場合、困難な状況に直面します。
すなわち、静的および動的障害を認識し、運転経路を計画し、動作を実行する必要がある。
知覚と経路計画の問題に対処するため,本論文では,エンコーダ・デコーダ深層ニューラルネットワークであるoctopathを提案する。
3次元octree環境モデルによって提供される離散化を用いて, 軌道予測を構成可能な分解能を持つ分類問題として再評価する。
トレーニング中、OctoPathは、所定のトレーニングデータセット内の予測と手動で駆動するトラジェクトリ間のエラーを最小限にする。
これにより、出力軌道点に無限の状態空間が存在する場合、回帰に基づく軌道推定の落とし穴を避けることができる。
環境センシングは40チャンネルの機械式LiDARセンサを用いて行われ、慣性測定ユニットと車輪のオドメトリーを用いて状態推定を行う。
実験はシミュレーションと実生活の両方で実施され、我々の開発したGridSimシミュレータとRovisLabのAutonomous Mobile Test Unitプラットフォームを用いて行われた。
我々は,CNN学習に基づく最適経路計画法と同様に,ベースラインハイブリッドA-Starアルゴリズムと回帰型教師あり学習法とをベンチマークしながら,屋内と屋外の異なる運転シナリオにおけるOctoPathの予測を評価する。
関連論文リスト
- End-to-End Steering for Autonomous Vehicles via Conditional Imitation Co-Learning [1.5020330976600735]
この課題に対処するために、条件付き模倣コラーニング(CIC)アプローチを導入する。
そこで我々は, 回帰と分類のギャップを埋めるために, 分類-回帰ハイブリッド損失を用いて, 操舵回帰問題を分類として提案する。
本モデルは,CIL法と比較して,見えない環境下での自律走行の成功率を平均62%向上させることを実証した。
論文 参考訳(メタデータ) (2024-11-25T06:37:48Z) - Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
そこで我々は,AVコントローラのトレーニングにAPG(analytic Policy gradients)アプローチを適用可能なシミュレータを提案し,その設計を行う。
提案するフレームワークは, エージェントがより根底的なポリシーを学ぶのを助けるために, 環境力学の勾配を役立てる, エンド・ツー・エンドの訓練ループに, 微分可能シミュレータを組み込む。
ダイナミクスにおけるパフォーマンスとノイズに対する堅牢性の大幅な改善と、全体としてより直感的なヒューマンライクな処理が見られます。
論文 参考訳(メタデータ) (2024-09-12T11:50:06Z) - Rethinking the Open-Loop Evaluation of End-to-End Autonomous Driving in
nuScenes [38.43491956142818]
計画課題は、内部意図と外部環境の両方からの入力に基づいて、エゴ車両の軌道を予測することである。
既存の研究の多くは、予測された軌道と地上の真実との衝突率とL2誤差を用いて、nuScenesデータセット上での性能を評価する。
本稿では,これらの既存の評価指標を再評価し,異なる手法の優越性を正確に測定するかどうかを検討する。
我々の単純な手法は、nuScenesデータセットと他の知覚に基づく手法と同じようなエンド・ツー・エンドの計画性能を実現し、平均L2誤差を約20%削減する。
論文 参考訳(メタデータ) (2023-05-17T17:59:11Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
本研究では,加速と操舵角度を予測するニューラルネットワークを学習するモデルレスディープ強化学習プランナを提案する。
実際の自動運転車にシステムをデプロイするために、我々は小さなニューラルネットワークで表されるモジュールも開発する。
論文 参考訳(メタデータ) (2022-07-05T16:33:20Z) - WayFAST: Traversability Predictive Navigation for Field Robots [5.914664791853234]
本稿では,車輪付き移動ロボットの走行経路を予測するための自己教師型アプローチを提案する。
キーとなるインスピレーションは、キノダイナミックモデルを用いてローリングロボットのトラクションを推定できることです。
オンライントラクション推定に基づくトレーニングパイプラインは,他の手法よりもデータ効率が高いことを示す。
論文 参考訳(メタデータ) (2022-03-22T22:02:03Z) - Learning Time-optimized Path Tracking with or without Sensory Feedback [5.254093731341154]
本稿では,ロボットが関節空間で定義された基準経路を素早く追従できる学習型アプローチを提案する。
ロボットは、物理シミュレータで生成されたデータを用いて強化学習によって訓練されたニューラルネットワークによって制御される。
論文 参考訳(メタデータ) (2022-03-03T19:13:31Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z) - Human Trajectory Prediction via Counterfactual Analysis [87.67252000158601]
複雑な動的環境における人間の軌道予測は、自律走行車やインテリジェントロボットにおいて重要な役割を果たす。
既存のほとんどの手法は、歴史の軌跡や環境からの相互作用の手がかりから行動の手がかりによって将来の軌跡を予測することを学習している。
本研究では,予測軌跡と入力手がかりの因果関係を調べるために,人間の軌跡予測に対する反実解析手法を提案する。
論文 参考訳(メタデータ) (2021-07-29T17:41:34Z) - XAI-N: Sensor-based Robot Navigation using Expert Policies and Decision
Trees [55.9643422180256]
本稿では,ロボットの密集した動的環境における衝突のない軌道を計算するためのセンサベース学習ナビゲーションアルゴリズムを提案する。
我々のアプローチは、sim2realパラダイムを用いて訓練された深層強化学習に基づくエキスパートポリシーを使用する。
シミュレーション環境でのアルゴリズムの利点を強調し、移動中の歩行者の間でClearpath Jackalロボットをナビゲートする。
論文 参考訳(メタデータ) (2021-04-22T01:33:10Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。