論文の概要: On Efficiently Explaining Graph-Based Classifiers
- arxiv url: http://arxiv.org/abs/2106.01350v2
- Date: Thu, 3 Jun 2021 08:15:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-04 13:09:39.633087
- Title: On Efficiently Explaining Graph-Based Classifiers
- Title(参考訳): グラフベース分類器の効率的な説明について
- Authors: Xuanxiang Huang, Yacine Izza, Alexey Ignatiev, Joao Marques-Silva
- Abstract要約: 本稿では,決定木 (DT) が解釈可能であるだけでなく,DT の 1 つのPI-Explanation を計算するためのリアルタイムアルゴリズムを提案する。
さらに,1つの対照的な説明を計算するためのリアルタイムアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 16.199563506727316
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent work has shown that not only decision trees (DTs) may not be
interpretable but also proposed a polynomial-time algorithm for computing one
PI-explanation of a DT. This paper shows that for a wide range of classifiers,
globally referred to as decision graphs, and which include decision trees and
binary decision diagrams, but also their multi-valued variants, there exist
polynomial-time algorithms for computing one PI-explanation. In addition, the
paper also proposes a polynomial-time algorithm for computing one contrastive
explanation. These novel algorithms build on explanation graphs (XpG's). XpG's
denote a graph representation that enables both theoretical and practically
efficient computation of explanations for decision graphs. Furthermore, the
paper pro- poses a practically efficient solution for the enumeration of
explanations, and studies the complexity of deciding whether a given feature is
included in some explanation. For the concrete case of decision trees, the
paper shows that the set of all contrastive explanations can be enumerated in
polynomial time. Finally, the experimental results validate the practical
applicability of the algorithms proposed in the paper on a wide range of
publicly available benchmarks.
- Abstract(参考訳): 近年の研究では、決定木(DT)は解釈可能であるだけでなく、DTの1つのPI展開を計算するための多項式時間アルゴリズムも提案されている。
本稿では,決定木や二分決定ダイアグラムを含む大域的に決定グラフと呼ばれる幅広い分類器に対して,その多値変種に対して,多項式時間計算アルゴリズムが存在することを示す。
さらに,1つの対照的な説明を計算するための多項式時間アルゴリズムを提案する。
これらの新しいアルゴリズムは説明グラフ(xpg)に基づいている。
XpGは、決定グラフに対する説明の理論的および実用的な計算を可能にするグラフ表現である。
さらに,本論文では,説明の列挙に有効な解法を提案するとともに,ある特徴が何らかの説明に含まれるかどうかを判断する複雑さについて考察する。
決定木を具体例にすると、すべての対照的な説明の集合は多項式時間で列挙できることを示した。
最後に,本論文で提案するアルゴリズムの実用性について,幅広い公開ベンチマークで検証した。
関連論文リスト
- Differentiable Proximal Graph Matching [40.41380102260085]
微分可能近位グラフマッチング(DPGM)と呼ばれる近位演算子に基づくグラフマッチングアルゴリズムを提案する。
アルゴリズム全体をグラフ親和性行列からノード対応の予測への微分可能な写像とみなすことができる。
数値実験により、PGMは様々なデータセット上で既存のグラフマッチングアルゴリズムより優れていることが示された。
論文 参考訳(メタデータ) (2024-05-26T08:17:13Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Explanation Selection Using Unlabeled Data for Chain-of-Thought
Prompting [80.9896041501715]
非専門家によって書かれたオフ・ザ・シェルフの説明のように、タスクのために"チューニング"されていない説明は、中途半端なパフォーマンスをもたらす可能性がある。
本稿では,ブラックボックス方式で説明拡散プロンプトを最適化する方法の課題に対処する。
論文 参考訳(メタデータ) (2023-02-09T18:02:34Z) - On Computing Probabilistic Abductive Explanations [30.325691263226968]
最も広く研究されているAI(XAI)アプローチは正しくない。
PI説明は重要な欠点も示しており、最も目に見えるものはおそらくその大きさである。
本稿では,多くの広く使用されている分類器に対して,関連する集合を計算するための実践的アプローチについて検討する。
論文 参考訳(メタデータ) (2022-12-12T15:47:10Z) - On Tackling Explanation Redundancy in Decision Trees [19.833126971063724]
決定木(DT)は機械学習(ML)モデルの解釈可能性の理想を表わしている。
本稿では, 決定木の解釈可能性と説明の簡潔さが等価である限り, 決定木を解釈可能とみなさざるを得ないことを示す理論的および実験的議論について述べる。
論文 参考訳(メタデータ) (2022-05-20T05:33:38Z) - Representation Power of Graph Neural Networks: Improved Expressivity via
Algebraic Analysis [124.97061497512804]
標準グラフニューラルネットワーク (GNN) はWeisfeiler-Lehman (WL) アルゴリズムよりも差別的な表現を生成する。
また、白い入力を持つ単純な畳み込みアーキテクチャは、グラフの閉経路をカウントする同変の特徴を生じさせることを示した。
論文 参考訳(メタデータ) (2022-05-19T18:40:25Z) - On Deciding Feature Membership in Explanations of SDD & Related
Classifiers [0.685316573653194]
この論文は、幅広い分類器のクラスに対してSigmaP$に対して、特徴メンバシップ問題(FMP)が難しいことを示している。
本稿では,SDD(Sentential Decision Diagrams)と他の命題言語に代表される分類器の命題符号化を提案する。
論文 参考訳(メタデータ) (2022-02-15T16:38:53Z) - Simple Graph Convolutional Networks [72.92604941595019]
単一層グラフ畳み込みネットワークで実装可能な単純なグラフ畳み込み演算子を提案する。
我々の畳み込み演算子は、文献における多くの提案よりも理論的に基礎を置いており、検討されたベンチマークデータセットに最先端の予測性能を示す。
論文 参考訳(メタデータ) (2021-06-10T15:23:59Z) - Explaining Naive Bayes and Other Linear Classifiers with Polynomial Time
and Delay [30.014888494169465]
PI-Explanations はログ線形時間で実現できることを示す。
また, PI-Explanationsは遅延時間で得られることを示す。
論文 参考訳(メタデータ) (2020-08-13T10:25:30Z) - Online Dense Subgraph Discovery via Blurred-Graph Feedback [87.9850024070244]
我々は高密度サブグラフ発見のための新しい学習問題を導入する。
まず,確率の高いほぼ最適解を求めるエッジ時間アルゴリズムを提案する。
そして、理論的保証のあるよりスケーラブルなアルゴリズムを設計する。
論文 参考訳(メタデータ) (2020-06-24T11:37:33Z) - Polynomial-Time Exact MAP Inference on Discrete Models with Global
Dependencies [83.05591911173332]
ジャンクションツリーアルゴリズムは、実行時の保証と正確なMAP推論のための最も一般的な解である。
本稿では,ノードのクローン化による新たなグラフ変換手法を提案する。
論文 参考訳(メタデータ) (2019-12-27T13:30:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。