論文の概要: Differentiable Proximal Graph Matching
- arxiv url: http://arxiv.org/abs/2405.16479v1
- Date: Sun, 26 May 2024 08:17:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 20:58:51.635349
- Title: Differentiable Proximal Graph Matching
- Title(参考訳): 微分可能な近位グラフマッチング
- Authors: Haoru Tan, Chuang Wang, Xu-Yao Zhang, Cheng-Lin Liu,
- Abstract要約: 微分可能近位グラフマッチング(DPGM)と呼ばれる近位演算子に基づくグラフマッチングアルゴリズムを提案する。
アルゴリズム全体をグラフ親和性行列からノード対応の予測への微分可能な写像とみなすことができる。
数値実験により、PGMは様々なデータセット上で既存のグラフマッチングアルゴリズムより優れていることが示された。
- 参考スコア(独自算出の注目度): 40.41380102260085
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph matching is a fundamental tool in computer vision and pattern recognition. In this paper, we introduce an algorithm for graph matching based on the proximal operator, referred to as differentiable proximal graph matching (DPGM). Specifically, we relax and decompose the quadratic assignment problem for the graph matching into a sequence of convex optimization problems. The whole algorithm can be considered as a differentiable map from the graph affinity matrix to the prediction of node correspondence. Therefore, the proposed method can be organically integrated into an end-to-end deep learning framework to jointly learn both the deep feature representation and the graph affinity matrix. In addition, we provide a theoretical guarantee to ensure the proposed method converges to a stable point with a reasonable number of iterations. Numerical experiments show that PGM outperforms existing graph matching algorithms on diverse datasets such as synthetic data, and CMU House. Meanwhile, PGM can fully harness the capability of deep feature extractors and achieve state-of-art performance on PASCAL VOC keypoints.
- Abstract(参考訳): グラフマッチングはコンピュータビジョンとパターン認識の基本的なツールである。
本稿では、微分可能近位グラフマッチング(DPGM)と呼ばれる、近位演算子に基づくグラフマッチングのアルゴリズムを提案する。
具体的には、グラフマッチングの二次代入問題を凸最適化問題列に緩和して分解する。
アルゴリズム全体をグラフ親和性行列からノード対応の予測への微分可能な写像とみなすことができる。
したがって,提案手法をエンドツーエンドのディープラーニングフレームワークに統合して,深部特徴表現とグラフ親和性行列を併用して学習することができる。
さらに,提案手法が適切な回数の反復で安定点に収束することを保証するための理論的保証を提供する。
数値実験により、PGMは合成データやCMU Houseといった多様なデータセット上で、既存のグラフマッチングアルゴリズムよりも優れていることが示された。
一方、PGMは、深い特徴抽出器の能力を完全に活用し、PASCAL VOCキーポイントの最先端性能を達成することができる。
関連論文リスト
- A Differentially Private Clustering Algorithm for Well-Clustered Graphs [6.523602840064548]
このようなグラフに特化された効率的な(epsilon,$delta$)-DPアルゴリズムを提供する。
我々のアルゴリズムは、ほぼバランスの取れたクラスタに対して$k$のグラフを扱う。
論文 参考訳(メタデータ) (2024-03-21T11:57:16Z) - SIGMA: A Structural Inconsistency Reducing Graph Matching Algorithm [21.1095092767297]
グラフマッチングの精度、構造的不整合(SI)を測定するための新しい基準を提案する。
具体的には、SIは、グラフのマルチホップ構造に対応するために熱拡散ウェーブレットを組み込む。
ミラー降下法を用いて,新しいK-ホップ構造に基づくマッチングコストでGromov-Wasserstein距離を解くことにより,SIGMAを導出可能であることを示す。
論文 参考訳(メタデータ) (2022-02-06T15:18:37Z) - Deep Probabilistic Graph Matching [72.6690550634166]
本稿では,マッチング制約を伴わずに,元のQAPに適合する深層学習ベースのグラフマッチングフレームワークを提案する。
提案手法は,一般的な3つのベンチマーク(Pascal VOC,Wilow Object,SPair-71k)で評価され,すべてのベンチマークにおいて過去の最先端よりも優れていた。
論文 参考訳(メタデータ) (2022-01-05T13:37:27Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
本稿では,グラフマッチングを向上するための信頼度の高いグラフ構造を探索するために,GLAMという共用電子グラフ学習とマッチングネットワークを提案する。
提案手法は,3つの人気ビジュアルマッチングベンチマーク (Pascal VOC, Willow Object, SPair-71k) で評価される。
すべてのベンチマークにおいて、従来の最先端のグラフマッチング手法よりも大きなマージンを達成している。
論文 参考訳(メタデータ) (2021-09-01T08:24:02Z) - Deep graph matching meets mixed-integer linear programming: Relax at
your own risk ? [8.05409526074409]
グラフマッチング問題のMILP定式化を統合する手法を提案する。
同様のアプローチは、グラフマッチング解決器の最適保証と品質レベルの導入によって導かれる。
実験により,いくつかの理論的知見が得られ,深部グラフマッチング手法の方向性を導出する。
論文 参考訳(メタデータ) (2021-08-01T08:29:55Z) - Accurate Learning of Graph Representations with Graph Multiset Pooling [45.72542969364438]
本稿では,その構造的依存関係に応じてノード間の相互作用をキャプチャするグラフマルチセットトランス (GMT) を提案する。
実験の結果,GMTはグラフ分類ベンチマークにおいて,最先端のグラフプーリング法を著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2021-02-23T07:45:58Z) - Fusion Moves for Graph Matching [35.27002115682325]
グラフマッチングとしても知られる二次代入問題に対する近似アルゴリズムに寄与する。
マルチラベル離散マルコフ確率場のための融合移動法の成功に触発され,グラフマッチングへの適用性を検討した。
本稿では,ラグランジュ二元法と効率的に組み合わせる方法について述べる。
論文 参考訳(メタデータ) (2021-01-28T16:09:46Z) - Multilayer Clustered Graph Learning [66.94201299553336]
我々は、観測された層を代表グラフに適切に集約するために、データ忠実度用語として対照的な損失を用いる。
実験により,本手法がクラスタクラスタw.r.tに繋がることが示された。
クラスタリング問題を解くためのクラスタリングアルゴリズムを学習する。
論文 参考訳(メタデータ) (2020-10-29T09:58:02Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。