Single-component gradient rules for variational quantum algorithms
- URL: http://arxiv.org/abs/2106.01388v1
- Date: Wed, 2 Jun 2021 18:00:10 GMT
- Title: Single-component gradient rules for variational quantum algorithms
- Authors: Thomas Hubregtsen, Frederik Wilde, Shozab Qasim, Jens Eisert
- Abstract summary: A common bottleneck of any such algorithm is constituted by the optimization of the variational parameters.
A popular set of optimization methods work on the estimate of the gradient, obtained by means of circuit evaluations.
This work provides a comprehensive picture of the family of gradient rules that vary parameters of quantum gates individually.
- Score: 1.3047205680129093
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many near-term quantum computing algorithms are conceived as variational
quantum algorithms, in which parameterized quantum circuits are optimized in a
hybrid quantum-classical setup. Examples are variational quantum eigensolvers,
quantum approximate optimization algorithms as well as various algorithms in
the context of quantum-assisted machine learning. A common bottleneck of any
such algorithm is constituted by the optimization of the variational
parameters. A popular set of optimization methods work on the estimate of the
gradient, obtained by means of circuit evaluations. We will refer to the way in
which one can combine these circuit evaluations as gradient rules. This work
provides a comprehensive picture of the family of gradient rules that vary
parameters of quantum gates individually. The most prominent known members of
this family are the parameter shift rule and the finite differences method. To
unite this family, we propose a generalized parameter shift rule that expresses
all members of the aforementioned family as special cases, and discuss how all
of these can be seen as providing access to a linear combination of exact
first- and second-order derivatives. We further prove that a parameter shift
rule with one non-shifted evaluation and only one shifted circuit evaluation
can not exist does not exist, and introduce a novel perspective for approaching
new gradient rules.
Related papers
- Variational approach to photonic quantum circuits via the parameter shift rule [0.0]
We derive a formulation of the parameter shift rule for reconfigurable optical linear circuits based on the Boson Sampling paradigm.
We also present similar rules for the computations of integrals over the variational parameters.
We employ the developed approach to experimentally test variational algorithms with single-photon states processed in a reconfigurable 6-mode universal integrated interferometer.
arXiv Detail & Related papers (2024-10-09T15:06:17Z) - Characterizing randomness in parameterized quantum circuits through expressibility and average entanglement [39.58317527488534]
Quantum Circuits (PQCs) are still not fully understood outside the scope of their principal application.
We analyse the generation of random states in PQCs under restrictions on the qubits connectivities.
We place a connection between how steep is the increase on the uniformity of the distribution of the generated states and the generation of entanglement.
arXiv Detail & Related papers (2024-05-03T17:32:55Z) - Random coordinate descent: a simple alternative for optimizing parameterized quantum circuits [4.112419132722306]
This paper introduces a random coordinate descent algorithm as a practical and easy-to-implement alternative to the full gradient descent algorithm.
Motivated by the behavior of measurement noise in the practical optimization of parameterized quantum circuits, this paper presents an optimization problem setting amenable to analysis.
arXiv Detail & Related papers (2023-10-31T18:55:45Z) - Parsimonious Optimisation of Parameters in Variational Quantum Circuits [1.303764728768944]
We propose a novel Quantum-Gradient Sampling that requires the execution of at most two circuits per iteration to update the optimisable parameters.
Our proposed method achieves similar convergence rates to classical gradient descent, and empirically outperforms gradient coordinate descent, and SPSA.
arXiv Detail & Related papers (2023-06-20T18:50:18Z) - Efficient estimation of trainability for variational quantum circuits [43.028111013960206]
We find an efficient method to compute the cost function and its variance for a wide class of variational quantum circuits.
This method can be used to certify trainability for variational quantum circuits and explore design strategies that can overcome the barren plateau problem.
arXiv Detail & Related papers (2023-02-09T14:05:18Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
Proposed hybrid algorithms encode a cost function into a problem Hamiltonian and optimize its energy by varying over a set of states with low circuit complexity.
We show that for levels $p=2,ldots, 6$, the level $p$ can be reduced by one while roughly maintaining the expected approximation ratio.
arXiv Detail & Related papers (2022-03-01T19:47:16Z) - General parameter-shift rules for quantum gradients [0.03823356975862005]
Variational quantum algorithms are ubiquitous in applications of noisy intermediate-scale quantum computers.
We show that a general parameter-shift rule can reduce the number of circuit evaluations significantly.
Our approach additionally reproduces reconstructions of the evaluated function up to a chosen order, leading to known generalizations of the Rotosolve algorithm.
arXiv Detail & Related papers (2021-07-26T18:00:02Z) - Quantum Error Mitigation Relying on Permutation Filtering [84.66087478797475]
We propose a general framework termed as permutation filters, which includes the existing permutation-based methods as special cases.
We show that the proposed filter design algorithm always converges to the global optimum, and that the optimal filters can provide substantial improvements over the existing permutation-based methods.
arXiv Detail & Related papers (2021-07-03T16:07:30Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
Given a unitary matrix that performs certain operation, obtaining the equivalent quantum circuit is a non-trivial task.
Three problems are explored: the coin for the quantum walker, the Toffoli gate and the Fredkin gate.
The algorithm proposed proved to be efficient in decomposition of quantum circuits, and as a generic approach, it is limited only by the available computational power.
arXiv Detail & Related papers (2021-06-06T13:15:25Z) - Measuring Analytic Gradients of General Quantum Evolution with the
Stochastic Parameter Shift Rule [0.0]
We study the problem of estimating the gradient of the function to be optimized directly from quantum measurements.
We derive a mathematically exact formula that provides an algorithm for estimating the gradient of any multi-qubit parametric quantum evolution.
Our algorithm continues to work, although with some approximations, even when all the available quantum gates are noisy.
arXiv Detail & Related papers (2020-05-20T18:24:11Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.