NTIRE 2021 Challenge on High Dynamic Range Imaging: Dataset, Methods and
Results
- URL: http://arxiv.org/abs/2106.01439v1
- Date: Wed, 2 Jun 2021 19:45:16 GMT
- Title: NTIRE 2021 Challenge on High Dynamic Range Imaging: Dataset, Methods and
Results
- Authors: Eduardo P\'erez-Pellitero and Sibi Catley-Chandar and Ale\v{s}
Leonardis and Radu Timofte
- Abstract summary: This paper reviews the first challenge on high-dynamic range imaging that was part of the New Trends in Image Restoration and Enhancement (NTIRE) workshop, held in conjunction with CVPR 2021.
The challenge aims at estimating a HDR image from one or multiple respective low-dynamic range (LDR) observations, which might suffer from under- or over-exposed regions and different sources of noise.
- Score: 56.932867490888015
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper reviews the first challenge on high-dynamic range (HDR) imaging
that was part of the New Trends in Image Restoration and Enhancement (NTIRE)
workshop, held in conjunction with CVPR 2021. This manuscript focuses on the
newly introduced dataset, the proposed methods and their results. The challenge
aims at estimating a HDR image from one or multiple respective low-dynamic
range (LDR) observations, which might suffer from under- or over-exposed
regions and different sources of noise. The challenge is composed by two
tracks: In Track 1 only a single LDR image is provided as input, whereas in
Track 2 three differently-exposed LDR images with inter-frame motion are
available. In both tracks, the ultimate goal is to achieve the best objective
HDR reconstruction in terms of PSNR with respect to a ground-truth image,
evaluated both directly and with a canonical tonemapping operation.
Related papers
- Generating Content for HDR Deghosting from Frequency View [56.103761824603644]
Recent Diffusion Models (DMs) have been introduced in HDR imaging field.
DMs require extensive iterations with large models to estimate entire images.
We propose the Low-Frequency aware Diffusion (LF-Diff) model for ghost-free HDR imaging.
arXiv Detail & Related papers (2024-04-01T01:32:11Z) - HistoHDR-Net: Histogram Equalization for Single LDR to HDR Image
Translation [12.45632443397018]
High Dynamic Range ( HDR) imaging aims to replicate the high visual quality and clarity of real-world scenes.
The literature offers various data-driven methods for HDR image reconstruction from Low Dynamic Range (LDR) counterparts.
A common limitation of these approaches is missing details in regions of the reconstructed HDR images.
We propose a simple and effective method, Histo-Net, to recover the fine details.
arXiv Detail & Related papers (2024-02-08T20:14:46Z) - SMAE: Few-shot Learning for HDR Deghosting with Saturation-Aware Masked
Autoencoders [97.64072440883392]
We propose a novel semi-supervised approach to realize few-shot HDR imaging via two stages of training, called SSHDR.
Unlikely previous methods, directly recovering content and removing ghosts simultaneously, which is hard to achieve optimum.
Experiments demonstrate that SSHDR outperforms state-of-the-art methods quantitatively and qualitatively within and across different datasets.
arXiv Detail & Related papers (2023-04-14T03:42:51Z) - NTIRE 2022 Challenge on High Dynamic Range Imaging: Methods and Results [173.32437855731752]
The challenge was part of the New Trends in Image Restoration and Enhancement (NTIRE) workshop, held in conjunction with CVPR 2022.
The challenge aims at estimating an HDR image from multiple respective low dynamic range (LDR) observations.
arXiv Detail & Related papers (2022-05-25T10:20:06Z) - A Two-stage Deep Network for High Dynamic Range Image Reconstruction [0.883717274344425]
This study tackles the challenges of single-shot LDR to HDR mapping by proposing a novel two-stage deep network.
Notably, our proposed method aims to reconstruct an HDR image without knowing hardware information, including camera response function (CRF) and exposure settings.
arXiv Detail & Related papers (2021-04-19T15:19:17Z) - HDR-GAN: HDR Image Reconstruction from Multi-Exposed LDR Images with
Large Motions [62.44802076971331]
We propose a novel GAN-based model, HDR-GAN, for synthesizing HDR images from multi-exposed LDR images.
By incorporating adversarial learning, our method is able to produce faithful information in the regions with missing content.
arXiv Detail & Related papers (2020-07-03T11:42:35Z) - Single-Image HDR Reconstruction by Learning to Reverse the Camera
Pipeline [100.5353614588565]
We propose to incorporate the domain knowledge of the LDR image formation pipeline into our model.
We model the HDRto-LDR image formation pipeline as the (1) dynamic range clipping, (2) non-linear mapping from a camera response function, and (3) quantization.
We demonstrate that the proposed method performs favorably against state-of-the-art single-image HDR reconstruction algorithms.
arXiv Detail & Related papers (2020-04-02T17:59:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.