論文の概要: Weakly Supervised Learning Creates a Fusion of Modeling Cultures
- arxiv url: http://arxiv.org/abs/2106.01485v1
- Date: Wed, 2 Jun 2021 21:52:05 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-04 16:24:24.140316
- Title: Weakly Supervised Learning Creates a Fusion of Modeling Cultures
- Title(参考訳): 弱い教師付き学習はモデリング文化の融合を生み出す
- Authors: Chengliang Tang, Gan Yuan, Tian Zheng
- Abstract要約: 弱い監督下でのみアルゴリズムモデリングを使用することは、不安定で誤解を招く結果につながる可能性がある。
有望な方向性は、データモデリングの文化をこのようなフレームワークに統合することだ。
- 参考スコア(独自算出の注目度): 3.2872586139884623
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The past two decades have witnessed the great success of the algorithmic
modeling framework advocated by Breiman et al. (2001). Nevertheless, the
excellent prediction performance of these black-box models rely heavily on the
availability of strong supervision, i.e. a large set of accurate and exact
ground-truth labels. In practice, strong supervision can be unavailable or
expensive, which calls for modeling techniques under weak supervision. In this
comment, we summarize the key concepts in weakly supervised learning and
discuss some recent developments in the field. Using algorithmic modeling alone
under a weak supervision might lead to unstable and misleading results. A
promising direction would be integrating the data modeling culture into such a
framework.
- Abstract(参考訳): 過去20年間、breimanらによって提唱されたアルゴリズムモデリングフレームワークが大きな成功を収めてきた。
(2001).
それでも、これらのブラックボックスモデルの優れた予測性能は、強い監督の可用性に大きく依存しています。
正確で正確な接地ラベルの大規模なセット。
実際には、強力な監督は利用できないか高価なものになり、弱い監督下でのモデリング技術を要求する。
本稿では、弱教師付き学習における鍵となる概念を要約し、この分野の最近の発展について論じる。
弱い監督下でのアルゴリズムモデリングだけでは、不安定で誤解を招く結果につながる可能性がある。
有望な方向性は、データモデリング文化をこのようなフレームワークに統合することだ。
関連論文リスト
- LoRE-Merging: Exploring Low-Rank Estimation For Large Language Model Merging [10.33844295243509]
基本モデルであるtextscLoRE-Merging へのアクセスを必要とせず,タスクベクトルの低ランク推定に基づくモデルマージのための統一フレームワークを提案する。
我々のアプローチは、細調整されたモデルからのタスクベクトルは、しばしば支配的な特異値の限られた数しか示さず、低ランク推定が干渉しにくくなるという観察に動機づけられている。
論文 参考訳(メタデータ) (2025-02-15T10:18:46Z) - Debate Helps Weak-to-Strong Generalization [68.70065254564642]
我々は,強い事前訓練モデルを用いて人間の監督を改善する方法について検討し,弱い人間の監督を増強した強いモデルを監督する。
議論は、信頼できない強力なモデルから信頼できる情報を抽出する弱いモデルを支援することができる。
OpenAIの弱いNLPベンチマークの実験では、組み合わせアプローチがアライメントを改善することが示されている。
論文 参考訳(メタデータ) (2025-01-21T05:36:13Z) - Super(ficial)-alignment: Strong Models May Deceive Weak Models in Weak-to-Strong Generalization [68.62228569439478]
弱い着想の問題が存在するかどうかを考察する。
弱いモデルと強いモデルの間の能力ギャップが増大するにつれて、偽造は増大する。
私たちの研究は、スーパーアライメントの真の信頼性にもっと注意を払う必要があることを強調します。
論文 参考訳(メタデータ) (2024-06-17T11:36:39Z) - Vision Superalignment: Weak-to-Strong Generalization for Vision
Foundation Models [55.919653720979824]
本稿では、より弱いモデルを用いてより強いモデルを監督する弱強一般化の概念に焦点を当てる。
弱強監督のための新規かつ適応的に調整可能な損失関数を提案する。
提案手法は, 強い一般化によって設定された性能ベンチマークを超えるだけでなく, データセット全体を用いた微調整の強いモデルの結果を上回る。
論文 参考訳(メタデータ) (2024-02-06T06:30:34Z) - Model-Agnostic Interpretation Framework in Machine Learning: A
Comparative Study in NBA Sports [0.2937071029942259]
本稿では,モデル性能と解釈可能性のトレードオフを整理する,革新的な枠組みを提案する。
我々のアプローチは高次元データに対するモジュラー操作を中心とし、解釈可能性を維持しながらエンドツーエンドの処理を可能にする。
我々は、我々のフレームワークを広範囲にテストし、計算効率と解釈可能性のバランスをとる上で、その優れた効果を検証した。
論文 参考訳(メタデータ) (2024-01-05T04:25:21Z) - Minimal Value-Equivalent Partial Models for Scalable and Robust Planning
in Lifelong Reinforcement Learning [56.50123642237106]
モデルに基づく強化学習における一般的な実践は、エージェントの環境のあらゆる側面をモデル化するモデルを学ぶことである。
このようなモデルは、生涯にわたる強化学習シナリオにおいて、スケーラブルで堅牢な計画を実行するのに特に適していない、と我々は主張する。
我々は,「最小値部分モデル」と呼ぶ,環境の関連する側面のみをモデル化する新しい種類のモデルを提案する。
論文 参考訳(メタデータ) (2023-01-24T16:40:01Z) - Generative Modeling Helps Weak Supervision (and Vice Versa) [87.62271390571837]
本稿では,弱い監督と生成的敵ネットワークを融合したモデルを提案する。
弱い監督によるラベル推定と並行して、データの離散変数をキャプチャする。
これは、弱い教師付き合成画像と擬似ラベルによるデータ拡張を可能にする最初のアプローチである。
論文 参考訳(メタデータ) (2022-03-22T20:24:21Z) - Voting based ensemble improves robustness of defensive models [82.70303474487105]
我々は、より堅牢性を高めるためのアンサンブルを作ることができるかどうか研究する。
最先端の先制防衛モデルを複数組み合わせることで,59.8%の堅牢な精度を達成できる。
論文 参考訳(メタデータ) (2020-11-28T00:08:45Z) - Explainable Deep Modeling of Tabular Data using TableGraphNet [1.376408511310322]
付加的特徴属性の形で説明可能な予測を生成する新しいアーキテクチャを提案する。
説明可能なモデルはブラックボックスモデルと同じレベルの性能が得られることを示す。
論文 参考訳(メタデータ) (2020-02-12T20:02:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。