論文の概要: Equivalence Checking of Dynamic Quantum Circuits
- arxiv url: http://arxiv.org/abs/2106.01658v1
- Date: Thu, 3 Jun 2021 08:03:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-27 23:29:08.945450
- Title: Equivalence Checking of Dynamic Quantum Circuits
- Title(参考訳): 動的量子回路の等価性検証
- Authors: Xin Hong, Yuan Feng, Sanjiang Li, Mingsheng Ying
- Abstract要約: 最先端の量子デバイスは依然として非常に限られた数の量子ビットしか持たない。
短期量子デバイスでより現実的なアルゴリズムを実行する1つの方法は、動的量子回路を使用することである。
この技術は、量子アルゴリズムの与えられた精度を達成するのに必要なリソースを大幅に削減するのに役立ちます。
- 参考スコア(独自算出の注目度): 7.835264621634824
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the rapid development of quantum computing these years,
state-of-the-art quantum devices still contain only a very limited number of
qubits. One possible way to execute more realistic algorithms in near-term
quantum devices is to employ dynamic quantum circuits, in which measurements
can happen during the circuit and their outcomes are used to control other
parts of the circuit. This technique can help to significantly reduce the
resources required to achieve a given accuracy of a quantum algorithm. However,
since this type of quantum circuits are more flexible, their verification is
much more challenging. In this paper, we give a formal definition of dynamic
quantum circuits and then propose to characterise their functionality in terms
of ensembles of linear operators. Based on this novel semantics, two dynamic
quantum circuits are equivalent if they have the same functionality. We further
propose and implement two decision diagram-based algorithms for checking the
equivalence of dynamic quantum circuits. Experiments show that embedding
classical logic into conventional quantum circuits does not incur significant
time and space burden.
- Abstract(参考訳): 近年の量子コンピューティングの急速な発展にもかかわらず、最先端の量子デバイスは依然として非常に限られた数の量子ビットしか持たない。
短期量子デバイスでより現実的なアルゴリズムを実行する方法の1つは、動的量子回路を使用することで、回路中に測定が行われ、その結果が回路の他の部分を制御するために使用される。
この技術は、量子アルゴリズムの与えられた精度を達成するのに必要なリソースを大幅に削減するのに役立つ。
しかし、この種の量子回路はより柔軟であるため、その検証はより困難である。
本稿では、動的量子回路の形式的定義を述べ、線形作用素のアンサンブルの観点からそれらの機能を特徴付けることを提案する。
この新しいセマンティクスに基づき、2つの動的量子回路が同じ機能を持つ場合、等価である。
さらに、動的量子回路の等価性をチェックする2つの決定図ベースのアルゴリズムを提案し実装する。
実験により、古典論理を従来の量子回路に埋め込むことは、時間と空間の重荷を伴わないことが示された。
関連論文リスト
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Diamond-shaped quantum circuit for real-time quantum dynamics in one
dimension [0.0]
量子多体状態は、多ビットゲートからなる量子回路を用いて普遍的に表現できることを示す。
逆場イジングモデルに対するクエンチ力学における2量子ゲートを用いた量子回路の効率性も評価した。
この結果から,多ビットゲート型量子回路を近似したダイヤモンド形状の量子回路が,システムの長期的ダイナミクスを正確に表現する上で極めて優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-10T07:07:54Z) - Dynamic quantum circuit compilation [11.550577505893367]
量子ハードウェアの最近の進歩は、中間回路の測定とリセットを導入し、測定量子ビットの再利用を可能にしている。
本稿では,静的量子回路を動的同値に変換するプロセスである動的量子回路コンパイルの体系的研究について述べる。
論文 参考訳(メタデータ) (2023-10-17T06:26:30Z) - Quantum Circuit Completeness: Extensions and Simplifications [44.99833362998488]
量子回路に関する最初の完全な方程式理論は、最近導入されたばかりである。
我々は方程式理論を単純化し、いくつかの規則が残りの規則から導出されることを証明した。
完全な方程式理論は、アンシラやクビットの破棄を伴う量子回路に拡張することができる。
論文 参考訳(メタデータ) (2023-03-06T13:31:27Z) - An Amplitude-Based Implementation of the Unit Step Function on a Quantum
Computer [0.0]
量子コンピュータ上での単位ステップ関数の形で非線形性を近似するための振幅に基づく実装を提案する。
より先進的な量子アルゴリズムに埋め込まれた場合、古典的コンピュータから直接入力を受ける2つの異なる回路タイプを量子状態として記述する。
論文 参考訳(メタデータ) (2022-06-07T07:14:12Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
証明者と検証者の間の「相互作用」は、検証可能性と実装のギャップを埋めることができる。
イオントラップ量子コンピュータを用いた対話型量子アドバンストプロトコルの最初の実装を実演する。
論文 参考訳(メタデータ) (2021-12-09T19:00:00Z) - Handling Non-Unitaries in Quantum Circuit Equivalence Checking [4.265279817927261]
量子コンピュータは、古典計算と量子計算の相互作用がリアルタイムで起こりうるレベルに達している。
これは、新しいより広範な量子回路、すなわち動的量子回路の出現を意味している。
シミュレーション、コンパイル、検証といった設計タスクに新たな課題をもたらす、幅広い利用可能なコンピューティングプリミティブを提供する。
論文 参考訳(メタデータ) (2021-06-02T12:04:56Z) - Exploiting dynamic quantum circuits in a quantum algorithm with
superconducting qubits [0.207811670193148]
超伝導系量子システム上に動的量子回路を構築する。
我々は、量子位相推定という最も基本的な量子アルゴリズムの1つを適応バージョンで活用する。
我々は、動的回路を用いたリアルタイム量子コンピューティングのバージョンが、実質的で有意義な利点をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-02-02T18:51:23Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
53量子ビット量子プロセッサにおける量子スクランブルのダイナミクスを実験的に検討する。
演算子の拡散は効率的な古典的モデルによって捉えられるが、演算子の絡み合いは指数関数的にスケールされた計算資源を必要とする。
論文 参考訳(メタデータ) (2021-01-21T22:18:49Z) - Quantum walk processes in quantum devices [55.41644538483948]
グラフ上の量子ウォークを量子回路として表現する方法を研究する。
提案手法は,量子ウォークアルゴリズムを量子コンピュータ上で効率的に実装する方法である。
論文 参考訳(メタデータ) (2020-12-28T18:04:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。