論文の概要: Learning Representation over Dynamic Graph using Aggregation-Diffusion
Mechanism
- arxiv url: http://arxiv.org/abs/2106.01678v1
- Date: Thu, 3 Jun 2021 08:25:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-04 15:57:10.990423
- Title: Learning Representation over Dynamic Graph using Aggregation-Diffusion
Mechanism
- Title(参考訳): 集約拡散機構を用いた動的グラフ上の学習表現
- Authors: Mingyi Liu and Zhiying Tu and Xiaofei Xu and Zhongjie Wang
- Abstract要約: 本稿では,アグリゲーション・ディフュージョン(AD)機構を提案する。
動的リンク予測タスクにおける2つの実世界のデータセットの実験において、ADメカニズムは情報を伝達するために集約のみを使用するベースラインモデルよりも優れている。
- 参考スコア(独自算出の注目度): 4.729833950299859
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Representation learning on graphs that evolve has recently received
significant attention due to its wide application scenarios, such as
bioinformatics, knowledge graphs, and social networks. The propagation of
information in graphs is important in learning dynamic graph representations,
and most of the existing methods achieve this by aggregation. However, relying
only on aggregation to propagate information in dynamic graphs can result in
delays in information propagation and thus affect the performance of the
method. To alleviate this problem, we propose an aggregation-diffusion (AD)
mechanism that actively propagates information to its neighbor by diffusion
after the node updates its embedding through the aggregation mechanism. In
experiments on two real-world datasets in the dynamic link prediction task, the
AD mechanism outperforms the baseline models that only use aggregation to
propagate information. We further conduct extensive experiments to discuss the
influence of different factors in the AD mechanism.
- Abstract(参考訳): 近年,バイオインフォマティクスや知識グラフ,ソーシャルネットワークといった幅広い応用シナリオによって,進化するグラフの表現学習が注目されている。
グラフにおける情報の伝播は動的グラフ表現の学習において重要であり、既存の手法のほとんどは集約によってこれを達成している。
しかし、動的グラフの情報伝達に集約のみに依存すると、情報伝達の遅延が生じ、その結果、手法の性能に影響を及ぼす可能性がある。
この問題を解決するために,ノードがアグリゲーション機構を通じて埋め込みを更新した後,隣人に情報を拡散して積極的に伝達するアグリゲーション拡散(AD)機構を提案する。
動的リンク予測タスクにおける2つの実世界のデータセットの実験において、ADメカニズムは情報を伝達するために集約のみを使用するベースラインモデルよりも優れている。
我々はさらに、ADメカニズムにおける異なる要因の影響について広範な実験を行った。
関連論文リスト
- Information propagation dynamics in Deep Graph Networks [1.8130068086063336]
Deep Graph Networks(DGN)は、構造化情報の処理と学習が可能なディープラーニングモデルのファミリとして登場した。
この論文は、静的グラフと動的グラフのためのDGNの内部の情報伝達のダイナミクスを考察し、動的システムとしての設計に焦点をあてる。
論文 参考訳(メタデータ) (2024-10-14T12:55:51Z) - Informative Subgraphs Aware Masked Auto-Encoder in Dynamic Graphs [1.3571543090749625]
本稿では,動的グラフの進化を導く情報サブグラフを生成するための制約付き確率的生成モデルを提案する。
DyGISによって同定された情報サブグラフは、動的グラフマスキングオートエンコーダ(DGMAE)の入力として機能する。
論文 参考訳(メタデータ) (2024-09-14T02:16:00Z) - Revealing Decurve Flows for Generalized Graph Propagation [108.80758541147418]
本研究は,有向グラフと重み付きグラフを用いて,m文を一般化した伝播を定義することによって,従来のメッセージパッシング(中心からグラフ学習)の限界に対処する。
この分野ではじめて、データセットにおける学習された伝播パターンの予備的な探索を含む。
論文 参考訳(メタデータ) (2024-02-13T14:13:17Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphsは階層的時間グラフとして動的相互作用を特徴付ける新しいアプローチである。
提案手法は,コンパクトなグラフベース表現を用いて相互作用をモデル化し,多種多様な時間スケールでの適応推論を可能にする。
我々は,サッカーシミュレータ,抵抗ゲーム,MOMA人間活動データセットなど,複雑でダイナミックなエージェントインタラクションを持つ複数のデータセット上でTimeGraphsを評価する。
論文 参考訳(メタデータ) (2024-01-06T06:26:49Z) - GDBN: a Graph Neural Network Approach to Dynamic Bayesian Network [7.876789380671075]
スパースDAGの学習を目的としたスコアに基づくグラフニューラルネットワーク手法を提案する。
グラフニューラルネットワークを用いた手法は,動的ベイジアンネットワーク推論を用いた他の最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2023-01-28T02:49:13Z) - Directed Acyclic Graph Structure Learning from Dynamic Graphs [44.21230819336437]
特徴(変数)の有向非巡回グラフ(DAG)の構造を推定することは、潜在データ生成プロセスを明らかにする上で重要な役割を果たす。
このようなユビキタスな動的グラフデータに基づくノード特徴生成機構の学習問題について検討する。
論文 参考訳(メタデータ) (2022-11-30T14:22:01Z) - Graph Neural Networks for Multi-Robot Active Information Acquisition [15.900385823366117]
基礎となるグラフを通して通信する移動ロボットのチームは、興味のある現象を表す隠れた状態を推定する。
既存のアプローチはスケーラブルではないか、動的現象に対処できないか、あるいは通信グラフの変化に対して堅牢でないかのどちらかです。
本稿では,グラフ表現上に情報を集約し,逐次決定を分散的に行う情報対応グラフブロックネットワーク(I-GBNet)を提案する。
論文 参考訳(メタデータ) (2022-09-24T21:45:06Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
我々は,動的に進化するグラフを連続的に扱う,TCLと呼ばれる新しいグラフニューラルネットワークアプローチを提案する。
我々の知る限りでは、これは動的グラフ上の表現学習にコントラスト学習を適用する最初の試みである。
論文 参考訳(メタデータ) (2021-05-17T15:33:25Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
グラフ畳み込みネットワークにおける既存の表現学習手法は主に、各ノードの近傍を知覚全体として記述することで設計される。
本稿では,グラフの潜在意味パスを学習することで暗黙的な意味を探索する意味グラフ畳み込みネットワーク(sgcn)を提案する。
論文 参考訳(メタデータ) (2021-01-16T16:18:43Z) - GCN for HIN via Implicit Utilization of Attention and Meta-paths [104.24467864133942]
不均一情報ネットワーク(HIN)埋め込みは、HINの構造と意味情報を分散表現にマッピングすることを目的としている。
本稿では,注意とメタパスを暗黙的に活用するニューラルネットワーク手法を提案する。
まず、各層で識別集約を行う多層グラフ畳み込みネットワーク(GCN)フレームワークを用いる。
次に,アグリゲーションから分離可能な新しい伝搬操作を導入することにより,効果的な緩和と改善を行う。
論文 参考訳(メタデータ) (2020-07-06T11:09:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。