論文の概要: GDBN: a Graph Neural Network Approach to Dynamic Bayesian Network
- arxiv url: http://arxiv.org/abs/2302.10804v1
- Date: Sat, 28 Jan 2023 02:49:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-26 13:59:46.020977
- Title: GDBN: a Graph Neural Network Approach to Dynamic Bayesian Network
- Title(参考訳): GDBN:動的ベイズネットワークに対するグラフニューラルネットワークアプローチ
- Authors: Yang Sun and Yifan Xie
- Abstract要約: スパースDAGの学習を目的としたスコアに基づくグラフニューラルネットワーク手法を提案する。
グラフニューラルネットワークを用いた手法は,動的ベイジアンネットワーク推論を用いた他の最先端手法よりも優れていた。
- 参考スコア(独自算出の注目度): 7.876789380671075
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identifying causal relations among multi-variate time series is one of the
most important elements towards understanding the complex mechanisms underlying
the dynamic system. It provides critical tools for forecasting, simulations and
interventions in science and business analytics. In this paper, we proposed a
graph neural network approach with score-based method aiming at learning a
sparse DAG that captures the causal dependencies in a discretized time temporal
graph. We demonstrate methods with graph neural network significantly
outperformed other state-of-the-art methods with dynamic bayesian networking
inference. In addition, from the experiments, the structural causal model can
be more accurate than a linear SCM discovered by the methods such as Notears.
- Abstract(参考訳): 多変量時系列間の因果関係を特定することは、力学系の基礎となる複雑なメカニズムを理解するための最も重要な要素の1つである。
科学やビジネス分析の予測、シミュレーション、介入のための重要なツールを提供する。
本稿では,離散時間時間グラフにおける因果依存性をキャプチャするスパースDAGの学習を目的としたスコアに基づくグラフニューラルネットワーク手法を提案する。
グラフニューラルネットワークを用いた手法は,動的ベイジアンネットワーク推論を用いた他の最先端手法よりも優れていた。
さらに, 実験結果から, 構造因果モデルの方が, Notears などの手法で発見された線形 SCM よりも精度が高いことがわかった。
関連論文リスト
- Interpreting Temporal Graph Neural Networks with Koopman Theory [9.088336125738385]
時間グラフに対する説明可能性のアプローチを導入する。
本稿では,STGNNの決定過程を解釈する2つの方法を提案する。
本稿では,感染時間や感染ノードなどの解釈可能な特徴を,拡散過程の文脈で正確に識別する方法を示す。
論文 参考訳(メタデータ) (2024-10-17T11:56:33Z) - Online Multi-modal Root Cause Analysis [61.94987309148539]
ルート原因分析(RCA)は、マイクロサービスシステムにおける障害の根本原因の特定に不可欠である。
既存のオンラインRCAメソッドは、マルチモーダルシステムにおける複雑な相互作用を見渡す単一モーダルデータのみを処理する。
OCEANは、根本原因の局在化のための新しいオンラインマルチモーダル因果構造学習手法である。
論文 参考訳(メタデータ) (2024-10-13T21:47:36Z) - Graph Attention Inference of Network Topology in Multi-Agent Systems [0.0]
本研究は,マルチエージェントシステムの将来の状態を予測するためのアテンションメカニズムを活用する,機械学習に基づく新しいソリューションを提案する。
次に、注目値の強さからグラフ構造を推定する。
提案したデータ駆動型グラフアテンション機械学習モデルにより,マルチエージェントシステムにおけるネットワークトポロジを同定できることを示す。
論文 参考訳(メタデータ) (2024-08-27T23:58:51Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - Dynamic Graph Representation Learning via Edge Temporal States Modeling and Structure-reinforced Transformer [5.093187534912688]
本稿では,動的グラフ表現学習のための新しいフレームワークであるRecurrent Structure-Reinforced Graph Transformer (RSGT)を紹介する。
RSGTは、繰り返し学習パラダイムを通じて、グラフトポロジと進化力学の両方をコードする時間ノード表現をキャプチャする。
離散動的グラフ表現学習におけるRSGTの優れた性能を示し、動的リンク予測タスクにおける既存の手法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-04-20T04:12:50Z) - Graph-Time Convolutional Neural Networks: Architecture and Theoretical
Analysis [12.995632804090198]
グラフ時間畳み込みニューラルネットワーク(GTCNN)を学習支援の原則アーキテクチャとして導入する。
このアプローチはどんな種類のプロダクトグラフでも機能し、パラメトリックグラフを導入して、プロダクトの時間的結合も学べます。
GTCNNが最先端のソリューションと好意的に比較できることを示す。
論文 参考訳(メタデータ) (2022-06-30T10:20:52Z) - Learning the Evolutionary and Multi-scale Graph Structure for
Multivariate Time Series Forecasting [50.901984244738806]
時系列の進化的・マルチスケール相互作用をモデル化する方法を示す。
特に、まず、拡張畳み込みと協調して、スケール固有の相関を捉える階層グラフ構造を提供する。
最終的な予測を得るために上記のコンポーネントを統合するために、統合ニューラルネットワークが提供される。
論文 参考訳(メタデータ) (2022-06-28T08:11:12Z) - Bayesian Inference of Stochastic Dynamical Networks [0.0]
本稿では,ネットワークトポロジと内部ダイナミクスを学習するための新しい手法を提案する。
グループスパースベイズ学習(GSBL)、BINGO、カーネルベースの方法、dynGENIE3、genIE3、ARNIと比較される。
本手法は,グループスパースベイズ学習 (GSBL), BINGO, kernel-based method, dynGENIE3, GENIE3, ARNI と比較して,最先端の性能を実現する。
論文 参考訳(メタデータ) (2022-06-02T03:22:34Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z) - Learned Factor Graphs for Inference from Stationary Time Sequences [107.63351413549992]
定常時間列のためのモデルベースアルゴリズムとデータ駆動型MLツールを組み合わせたフレームワークを提案する。
ニューラルネットワークは、時系列の分布を記述する因子グラフの特定のコンポーネントを別々に学習するために開発された。
本稿では,学習された定常因子グラフに基づく推論アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-05T07:06:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。