論文の概要: Efficient methods for Gaussian Markov random fields under sparse linear
constraints
- arxiv url: http://arxiv.org/abs/2106.01712v1
- Date: Thu, 3 Jun 2021 09:31:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-04 15:59:32.828311
- Title: Efficient methods for Gaussian Markov random fields under sparse linear
constraints
- Title(参考訳): スパース線形制約下におけるガウスマルコフ確率場の効率的な解法
- Authors: David Bolin and Jonas Wallin
- Abstract要約: 線形制約付きガウスマルコフランダム場(GMRF)の推論とシミュレーション法は、制約数が大きければ計算的に禁止される。
本稿では,スパース制約の一般的な場合において,これらの課題を克服するための新しい手法を提案する。
- 参考スコア(独自算出の注目度): 2.741266294612776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Methods for inference and simulation of linearly constrained Gaussian Markov
Random Fields (GMRF) are computationally prohibitive when the number of
constraints is large. In some cases, such as for intrinsic GMRFs, they may even
be unfeasible. We propose a new class of methods to overcome these challenges
in the common case of sparse constraints, where one has a large number of
constraints and each only involves a few elements. Our methods rely on a basis
transformation into blocks of constrained versus non-constrained subspaces, and
we show that the methods greatly outperform existing alternatives in terms of
computational cost. By combining the proposed methods with the stochastic
partial differential equation approach for Gaussian random fields, we also show
how to formulate Gaussian process regression with linear constraints in a GMRF
setting to reduce computational cost. This is illustrated in two applications
with simulated data.
- Abstract(参考訳): 線形制約付きガウスマルコフ確率場(gmrf)の推論とシミュレーションの方法は、制約数が大きい場合には計算的に禁止される。
例えば、固有のGMRFの場合、それらは実現不可能である。
スパース制約(sparse constraints)の一般的な場合において、これらの課題を克服する新しい手法のクラスを提案し、そこでは、制約が多数あり、それぞれがいくつかの要素のみを含む。
提案手法は制約付き部分空間と非制約付き部分空間のブロックへの基底変換に依存しており,計算コストの面では既存手法を大きく上回っていることを示す。
提案手法をガウス確率場に対する確率偏微分方程式法と組み合わせることで, GMRF設定において線形制約付きガウス過程の回帰を定式化して計算コストを削減する方法を示す。
これはシミュレーションデータを持つ2つのアプリケーションで説明される。
関連論文リスト
- Maximum a Posteriori Inference for Factor Graphs via Benders' Decomposition [0.38233569758620056]
一般ベイズ因子モデルにおける最大a-ポストペリオーリ推定法を提案する。
ベイジアン・ガウス混合モデルと潜在ディリクレ割り当てに対するMAP推定アルゴリズムを導出する。
論文 参考訳(メタデータ) (2024-10-24T19:57:56Z) - Riemannian stochastic optimization methods avoid strict saddle points [68.80251170757647]
研究中のポリシーは、確率 1 の厳密なサドル点/部分多様体を避けていることを示す。
この結果は、アルゴリズムの極限状態が局所最小値にしかならないことを示すため、重要な正当性チェックを提供する。
論文 参考訳(メタデータ) (2023-11-04T11:12:24Z) - A New Computationally Simple Approach for Implementing Neural Networks
with Output Hard Constraints [5.482532589225552]
ニューラルネットワークの出力値に厳密な凸制約を課す新しい手法を提案する。
マッピングは、出力の制約のある追加のニューラルネットワーク層によって実装される。
提案手法は,出力ベクトルだけでなく,入力による共同制約にも制約が課される場合に,単純に拡張される。
論文 参考訳(メタデータ) (2023-07-19T21:06:43Z) - Stochastic Inexact Augmented Lagrangian Method for Nonconvex Expectation
Constrained Optimization [88.0031283949404]
多くの実世界の問題は複雑な非機能的制約を持ち、多くのデータポイントを使用する。
提案手法は,従来最もよく知られた結果で既存手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-12-19T14:48:54Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
ポートフォリオ最適化からロジスティクスに至るまで、制約付き最適化問題は業界に多い。
これらの問題の解決における主要な障害の1つは、有効な検索空間を制限する非自明なハード制約の存在である。
本研究では、Ax=bという形の任意の整数値等式制約をU(1)対称ネットワーク(TN)に直接エンコードし、それらの適用性を量子に着想を得た生成モデルとして活用する。
論文 参考訳(メタデータ) (2022-11-16T18:59:54Z) - Faster One-Sample Stochastic Conditional Gradient Method for Composite
Convex Minimization [61.26619639722804]
滑らかで非滑らかな項の和として形成される凸有限サム目標を最小化するための条件勾配法(CGM)を提案する。
提案手法は, 平均勾配 (SAG) 推定器を備え, 1回に1回のサンプルしか必要としないが, より高度な分散低減技術と同等の高速収束速度を保証できる。
論文 参考訳(メタデータ) (2022-02-26T19:10:48Z) - Reduction of the Number of Variables in Parametric Constrained
Least-Squares Problems [0.20305676256390928]
本稿では,関連する最適化変数数を削減する手法を提案する。
本稿では, 非線形ベンチマークプロセスの数値実験および線形化MPC問題において, 提案手法の優れた性能を示す。
論文 参考訳(メタデータ) (2020-12-18T18:26:40Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
構造凸最適化問題に対する条件勾配に基づく2つの新しい解法を提案する。
私たちのフレームワークの最も重要な特徴は、各イテレーションで制約のサブセットだけが処理されることです。
提案アルゴリズムは, 条件勾配のステップとともに, 分散の低減と平滑化に頼り, 厳密な収束保証を伴っている。
論文 参考訳(メタデータ) (2020-07-07T21:26:35Z) - A Survey of Constrained Gaussian Process Regression: Approaches and
Implementation Challenges [0.0]
実証性や有界制約、単調性および凸性制約、微分方程式制約、境界条件制約を含むガウス過程制約のいくつかのクラスの概要を提供する。
本稿では,各手法の背景にある戦略と実装の違いを比較し,制約によってもたらされる計算上の課題について議論する。
論文 参考訳(メタデータ) (2020-06-16T17:03:36Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
このアルゴリズムのクラスは、最小二乗問題に対する最も高速な解法のうち、いくつかのランダム化手法を含んでいる。
我々は2つの古典的埋め込み、すなわちガウス射影とアダマール変換のサブサンプリングに焦点を当てる。
得られたアルゴリズムは条件数に依存しない最小二乗問題の解法として最も複雑である。
論文 参考訳(メタデータ) (2020-02-21T17:45:32Z) - Sparse Orthogonal Variational Inference for Gaussian Processes [34.476453597078894]
誘導点を用いたガウス過程に対するスパース変分近似の新しい解釈を導入する。
この定式化は既存の近似を復元し、同時に限界確率と新しい変分推論アルゴリズムのより厳密な下界を得ることができることを示す。
論文 参考訳(メタデータ) (2019-10-23T15:01:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。