論文の概要: MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation
- arxiv url: http://arxiv.org/abs/2205.15540v1
- Date: Tue, 31 May 2022 04:57:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-01 12:53:59.785117
- Title: MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation
- Title(参考訳): MACE: 対実的説明のための効率的なモデルに依存しないフレームワーク
- Authors: Wenzhuo Yang and Jia Li and Caiming Xiong and Steven C.H. Hoi
- Abstract要約: MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
- 参考スコア(独自算出の注目度): 132.77005365032468
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Counterfactual explanation is an important Explainable AI technique to
explain machine learning predictions. Despite being studied actively, existing
optimization-based methods often assume that the underlying machine-learning
model is differentiable and treat categorical attributes as continuous ones,
which restricts their real-world applications when categorical attributes have
many different values or the model is non-differentiable. To make
counterfactual explanation suitable for real-world applications, we propose a
novel framework of Model-Agnostic Counterfactual Explanation (MACE), which
adopts a newly designed pipeline that can efficiently handle non-differentiable
machine-learning models on a large number of feature values. in our MACE
approach, we propose a novel RL-based method for finding good counterfactual
examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity,
sparsity and proximity.
- Abstract(参考訳): 事実的説明は、機械学習の予測を説明するための重要な説明可能なAI技術である。
活発に研究されているにもかかわらず、既存の最適化ベースの手法では、基礎となる機械学習モデルは微分可能であり、分類属性を連続的なものとして扱うことがしばしば想定されている。
実世界の応用に適した反現実的説明を行うために,多数の特徴値に基づいて非微分不可能な機械学習モデルを効率的に処理できるパイプラインを新たに設計したMACE(Model-Agnostic Counterfactual Explanation)を提案する。
MACEアプローチでは,優れた反実例を見つけるための新しいRL法と,近接性を改善するための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
関連論文リスト
- LaPLACE: Probabilistic Local Model-Agnostic Causal Explanations [1.0370398945228227]
本稿では,機械学習モデルに対する確率論的原因・効果説明を提供するLaPLACE-Explainerを紹介する。
LaPLACE-Explainerコンポーネントはマルコフ毛布の概念を利用して、関連する特徴と非関連する特徴の間の統計的境界を確立する。
提案手法は,LIME と SHAP の局所的精度と特徴の整合性の観点から,因果的説明と性能を向上する。
論文 参考訳(メタデータ) (2023-10-01T04:09:59Z) - Increasing Performance And Sample Efficiency With Model-agnostic
Interactive Feature Attributions [3.0655581300025996]
我々は,2つの一般的な説明手法(Occlusion と Shapley の値)に対して,モデルに依存しない実装を提供し,その複雑なモデルにおいて,完全に異なる属性を強制する。
提案手法は,修正された説明に基づいてトレーニングデータセットを増強することで,モデルの性能を著しく向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-28T15:23:28Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Inducing Semantic Grouping of Latent Concepts for Explanations: An
Ante-Hoc Approach [18.170504027784183]
我々は,潜伏状態を利用してモデルの異なる部分を適切に修正することにより,より良い説明が得られ,予測性能が向上することを示した。
また,2つの異なる自己スーパービジョン技術を用いて,考察対象の自己スーパービジョンのタイプに関連する意味ある概念を抽出する手法を提案した。
論文 参考訳(メタデータ) (2021-08-25T07:09:57Z) - Model-agnostic and Scalable Counterfactual Explanations via
Reinforcement Learning [0.5729426778193398]
本稿では,最適化手順をエンドツーエンドの学習プロセスに変換する深層強化学習手法を提案する。
実世界のデータを用いた実験により,本手法はモデルに依存しず,モデル予測からのフィードバックのみに依存することがわかった。
論文 参考訳(メタデータ) (2021-06-04T16:54:36Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
コンピュータビジョンの応用において、生成的対実法はモデルの入力を摂動させて予測を変更する方法を示す。
本稿では,多様性強化損失を用いて制約される不連続潜在空間における摂動を学習する反事実法を提案する。
このモデルは, 従来の最先端手法と比較して, 高品質な説明を生産する成功率を向上させる。
論文 参考訳(メタデータ) (2021-03-18T12:57:34Z) - Probabilistic Case-based Reasoning for Open-World Knowledge Graph
Completion [59.549664231655726]
ケースベース推論(CBR)システムは,与えられた問題に類似した事例を検索することで,新たな問題を解決する。
本稿では,知識ベース(KB)の推論において,そのようなシステムが実現可能であることを示す。
提案手法は,KB内の類似エンティティからの推論パスを収集することにより,エンティティの属性を予測する。
論文 参考訳(メタデータ) (2020-10-07T17:48:12Z) - A Diagnostic Study of Explainability Techniques for Text Classification [52.879658637466605]
既存の説明可能性技術を評価するための診断特性のリストを作成する。
そこで本研究では, モデルの性能と有理性との整合性の関係を明らかにするために, 説明可能性手法によって割り当てられた有理性スコアと有理性入力領域の人間のアノテーションを比較した。
論文 参考訳(メタデータ) (2020-09-25T12:01:53Z) - PermuteAttack: Counterfactual Explanation of Machine Learning Credit
Scorecards [0.0]
本稿では、金融における小売クレジットスコアリングに使用される機械学習(ML)モデルの検証と説明のための新しい方向性と方法論について述べる。
提案するフレームワークは人工知能(AI)のセキュリティと敵MLの分野からモチベーションを引き出す。
論文 参考訳(メタデータ) (2020-08-24T00:05:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。