論文の概要: Statistical embedding: Beyond principal components
- arxiv url: http://arxiv.org/abs/2106.01858v1
- Date: Thu, 3 Jun 2021 14:01:21 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-04 16:23:57.294774
- Title: Statistical embedding: Beyond principal components
- Title(参考訳): 統計的埋め込み:主成分を超えて
- Authors: Dag Tj{\o}stheim and Martin Jullum and Anders L{\o}land
- Abstract要約: 3つのメソッドが提示される: $t$-SNE, UMAP と LargeVis はそれぞれ 1 と 2 と 3 のメソッドに基づいている。
これらの手法は、2つの模擬データセットで示され比較される: 1つは3重のノイズラヌキュロイド曲線と、もう1つは複雑さを増すネットワークと2種類のノードからなる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There has been an intense recent activity in embedding of very high
dimensional and nonlinear data structures, much of it in the data science and
machine learning literature. We survey this activity in four parts. In the
first part we cover nonlinear methods such as principal curves,
multidimensional scaling, local linear methods, ISOMAP, graph based methods and
kernel based methods. The second part is concerned with topological embedding
methods, in particular mapping topological properties into persistence
diagrams. Another type of data sets with a tremendous growth is very
high-dimensional network data. The task considered in part three is how to
embed such data in a vector space of moderate dimension to make the data
amenable to traditional techniques such as cluster and classification
techniques. The final part of the survey deals with embedding in
$\mathbb{R}^2$, which is visualization. Three methods are presented: $t$-SNE,
UMAP and LargeVis based on methods in parts one, two and three, respectively.
The methods are illustrated and compared on two simulated data sets; one
consisting of a triple of noisy Ranunculoid curves, and one consisting of
networks of increasing complexity and with two types of nodes.
- Abstract(参考訳): 近年、非常に高次元で非線形なデータ構造を組み込む活動が盛んに行われており、その多くがデータサイエンスや機械学習の文献に使われている。
この活動を4つの部分で調査する。
まず,主曲線,多次元スケーリング,局所線形手法,ISOMAP,グラフベース手法,カーネルベース手法などの非線形手法について述べる。
第2部は、特にトポロジカルプロパティを永続化ダイアグラムにマッピングする、トポロジカル埋め込みメソッドに関するものである。
成長の著しい別のタイプのデータセットは、非常に高次元のネットワークデータである。
パート3で考慮されるタスクは、そのようなデータを適度な次元のベクトル空間に埋め込んで、クラスタや分類技術といった従来の手法に適合させる方法である。
調査の最後の部分は、可視化である$\mathbb{r}^2$への埋め込みに関するものだ。
3つのメソッドが提示される: $t$-SNE, UMAP と LargeVis はそれぞれ 1 と 2 と 3 のメソッドに基づいている。
これらの手法は、2つの模擬データセットで示され比較される: 1つは3重のノイズラヌキュロイド曲線と、もう1つは複雑さを増すネットワークと2種類のノードからなる。
関連論文リスト
- Dissecting embedding method: learning higher-order structures from data [0.0]
データ学習のための幾何学的深層学習法は、しばしば特徴空間の幾何学に関する仮定のセットを含む。
これらの仮定と、データが離散的で有限であるという仮定は、いくつかの一般化を引き起こし、データとモデルの出力の間違った解釈を生み出す可能性がある。
論文 参考訳(メタデータ) (2024-10-14T08:19:39Z) - A Closer Look at Deep Learning on Tabular Data [52.50778536274327]
タブラルデータは、機械学習の様々な領域で広く使われている。
Deep Neural Network(DNN)ベースの手法は、ツリーベースに匹敵する有望なパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-07-01T04:24:07Z) - Self-Supervised Learning for Multimodal Non-Rigid 3D Shape Matching [15.050801537501462]
我々は、メッシュベースの関数マップ正規化と、メッシュとポイントクラウドデータを結合する対照的な損失を組み合わせた、自己教師型マルチモーダル学習戦略を導入する。
我々の形状マッチングアプローチは、三角形メッシュ、完全点雲、部分的に観察された点雲のモード内対応を得ることを可能にする。
提案手法は,いくつかの挑戦的なベンチマークデータセットに対して,最先端の結果を達成できることを実証する。
論文 参考訳(メタデータ) (2023-03-20T09:47:02Z) - Geometry Contrastive Learning on Heterogeneous Graphs [50.58523799455101]
本稿では,幾何学コントラスト学習(Geometry Contrastive Learning, GCL)と呼ばれる,新しい自己指導型学習手法を提案する。
GCLはユークリッドと双曲的な視点からヘテロジニアスグラフを同時に見ることができ、リッチな意味論と複雑な構造をモデル化する能力の強い融合を目指している。
4つのベンチマークデータセットの大規模な実験は、提案手法が強いベースラインよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-06-25T03:54:53Z) - A Topological Approach for Semi-Supervised Learning [0.0]
トポロジカルデータ分析(TDA)に基づく半教師付き学習手法を提案する。
特に,2つの異なるトポロジ的アプローチに従って,2つの半教師付き学習手法を開発した。
本研究で開発された手法は,手作業でラベル付けしたデータのみを学習したモデルと,従来の半教師付き学習手法を用いて学習したモデルとを比較検討した。
論文 参考訳(メタデータ) (2022-05-19T15:23:39Z) - Index $t$-SNE: Tracking Dynamics of High-Dimensional Datasets with
Coherent Embeddings [1.7188280334580195]
本稿では,クラスタの位置を保存した新しいものを作成するために,埋め込みを再利用する手法を提案する。
提案アルゴリズムは,新しい項目を埋め込むために$t$-SNEと同じ複雑さを持つ。
論文 参考訳(メタデータ) (2021-09-22T06:45:37Z) - Manifold Topology Divergence: a Framework for Comparing Data Manifolds [109.0784952256104]
本研究では,深部生成モデルの評価を目的としたデータ多様体の比較フレームワークを開発する。
クロスバーコードに基づき,manifold Topology Divergence score(MTop-Divergence)を導入する。
MTop-Divergenceは,様々なモードドロップ,モード内崩壊,モード発明,画像乱れを正確に検出する。
論文 参考訳(メタデータ) (2021-06-08T00:30:43Z) - A Local Similarity-Preserving Framework for Nonlinear Dimensionality
Reduction with Neural Networks [56.068488417457935]
本稿では,Vec2vecという新しい局所非線形手法を提案する。
ニューラルネットワークを訓練するために、マトリックスの近傍類似度グラフを構築し、データポイントのコンテキストを定義します。
8つの実データセットにおけるデータ分類とクラスタリングの実験により、Vec2vecは統計仮説テストにおける古典的な次元削減法よりも優れていることが示された。
論文 参考訳(メタデータ) (2021-03-10T23:10:47Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
2流グラフ畳み込みネットワーク(TSGCNet)を提案し、異なる幾何学的特性から多視点情報を学ぶ。
3次元口腔内スキャナーで得られた歯科モデルのリアルタイムデータセットを用いてTSGCNetの評価を行った。
論文 参考訳(メタデータ) (2020-12-26T08:02:56Z) - Primal-Dual Mesh Convolutional Neural Networks [62.165239866312334]
本稿では,グラフ・ニューラル・ネットワークの文献からトライアングル・メッシュへ引き起こされた原始双対のフレームワークを提案する。
提案手法は,3次元メッシュのエッジと顔の両方を入力として特徴付け,動的に集約する。
メッシュ単純化の文献から得られたツールを用いて、我々のアプローチに関する理論的知見を提供する。
論文 参考訳(メタデータ) (2020-10-23T14:49:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。