論文の概要: SimCLS: A Simple Framework for Contrastive Learning of Abstractive
Summarization
- arxiv url: http://arxiv.org/abs/2106.01890v1
- Date: Thu, 3 Jun 2021 14:34:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-04 16:14:47.604972
- Title: SimCLS: A Simple Framework for Contrastive Learning of Abstractive
Summarization
- Title(参考訳): simcls:抽象要約のコントラスト学習のためのシンプルなフレームワーク
- Authors: Yixin Liu, Pengfei Liu
- Abstract要約: 我々は抽象的な要約のための概念的に単純だが経験的に強力なフレームワークSimを提案する。
既存のトップスコアシステムに対して小さな変更を加えることで、Simは既存のトップスコアシステムの性能を大きなマージンで向上させることができる。
提案したモデルの結果はExplainaBoardプラットフォームにデプロイされ、研究者はより詳細な方法でシステムを理解することができる。
- 参考スコア(独自算出の注目度): 14.16710715347118
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a conceptually simple while empirically powerful
framework for abstractive summarization, SimCLS, which can bridge the gap
between the learning objective and evaluation metrics resulting from the
currently dominated sequence-to-sequence learning framework by formulating text
generation as a reference-free evaluation problem (i.e., quality estimation)
assisted by contrastive learning. Experimental results show that, with minor
modification over existing top-scoring systems, SimCLS can improve the
performance of existing top-performing models by a large margin. Particularly,
2.51 absolute improvement against BART and 2.50 over PEGASUS w.r.t ROUGE-1 on
the CNN/DailyMail dataset, driving the state-of-the-art performance to a new
level. We have open-sourced our codes and results:
https://github.com/yixinL7/SimCLS. Results of our proposed models have been
deployed into ExplainaBoard platform, which allows researchers to understand
our systems in a more fine-grained way.
- Abstract(参考訳): 本稿では,テキスト生成を参照なし評価問題(すなわち,品質推定)として定式化することで,現在支配されているシーケンス・ツー・シーケンス学習フレームワークから得られる学習目標と評価指標のギャップを埋めることのできる,抽象的要約のための概念的単純かつ実証的に強力なフレームワークであるSimCLSを提案する。
実験の結果、既存のトップスコーリングシステムに対して小さな修正を加えることで、simclsは既存のトップスコーリングモデルの性能を大きなマージンで改善できることがわかった。
特に、BARTに対する2.51の絶対的な改善と、CNN/DailyMailデータセット上のPEGASUS w.r.t ROUGE-1に対する2.50の大幅な改善により、最先端のパフォーマンスは新たなレベルに向上した。
私たちはコードと結果をオープンソース化しました。
提案したモデルの結果はExplainaBoardプラットフォームにデプロイされ、研究者はより詳細な方法でシステムを理解することができる。
関連論文リスト
- Making Text Embedders Few-Shot Learners [33.50993377494602]
本稿では,高品質なテキスト埋め込みを実現するために,少数の例を用いた新しいモデルbge-en-iclを提案する。
提案手法では,タスク関連例をクエリ側に直接統合することで,タスク間の大幅な改善を実現している。
MTEBおよびAIR-Benchベンチマークによる実験結果から,本手法がSOTA(State-of-the-art)性能を新たに設定することを示す。
論文 参考訳(メタデータ) (2024-09-24T03:30:19Z) - Alleviating Over-smoothing for Unsupervised Sentence Representation [96.19497378628594]
本稿では,この問題を緩和するために,SSCL(Self-Contrastive Learning)というシンプルな手法を提案する。
提案手法は非常に単純で,様々な最先端モデルに拡張して,性能向上を図ることができる。
論文 参考訳(メタデータ) (2023-05-09T11:00:02Z) - Learning from Mistakes: Self-Regularizing Hierarchical Representations
in Point Cloud Semantic Segmentation [15.353256018248103]
LiDARセマンティックセマンティックセマンティクスは、きめ細かいシーン理解を実現するために注目を集めている。
本稿では、標準モデルから派生した分類ミスタケス(LEAK)からLEArnを分離する粗大な設定を提案する。
我々のLEAKアプローチは非常に一般的で、どんなセグメンテーションアーキテクチャにもシームレスに適用できます。
論文 参考訳(メタデータ) (2023-01-26T14:52:30Z) - USER: Unified Semantic Enhancement with Momentum Contrast for Image-Text
Retrieval [115.28586222748478]
Image-Text Retrieval (ITR) は、与えられたクエリに意味のあるターゲットインスタンスを、他のモダリティから検索することを目的としている。
既存のアプローチは通常、2つの大きな制限に悩まされる。
論文 参考訳(メタデータ) (2023-01-17T12:42:58Z) - UniASM: Binary Code Similarity Detection without Fine-tuning [2.2329530239800035]
モデルがバイナリコードの複雑なニュアンスをキャプチャすることを保証するために,新しいリッチ・セマンティック関数表現手法を提案する。
新たに設計された2つのトレーニングタスクを含むUniASMという,UniLMベースのバイナリコード埋め込みモデルを紹介した。
実験の結果,UniASMは評価データセットに対する最先端(SOTA)アプローチよりも優れていた。
論文 参考訳(メタデータ) (2022-10-28T14:04:57Z) - COLO: A Contrastive Learning based Re-ranking Framework for One-Stage
Summarization [84.70895015194188]
コントラスト学習に基づく一段階要約フレームワークであるCOLOを提案する。
COLOはCNN/DailyMailベンチマークの1段階システムの抽出と抽象化結果を44.58と46.33ROUGE-1スコアに引き上げた。
論文 参考訳(メタデータ) (2022-09-29T06:11:21Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
アクションラベルはソースデータセットでのみ利用可能だが、トレーニング段階のターゲットデータセットでは利用できない。
我々は,2つの骨格に基づく行動データセット間の領域シフトを低減するために,自己スーパービジョン方式を利用する。
時間的セグメントや人体部分のセグメンテーションとパーフォーミングにより、我々は2つの自己教師あり学習分類タスクを設計する。
論文 参考訳(メタデータ) (2022-07-17T07:05:39Z) - Novel Class Discovery in Semantic Segmentation [104.30729847367104]
セマンティックにおける新しいクラス発見(NCDSS)について紹介する。
ラベル付き非結合クラスの集合から事前の知識を与えられた新しいクラスを含むラベル付きイメージのセグメンテーションを目的としている。
NCDSSでは、オブジェクトと背景を区別し、画像内の複数のクラスの存在を処理する必要があります。
本稿では,エントロピーに基づく不確実性モデリングと自己学習(EUMS)フレームワークを提案し,ノイズの多い擬似ラベルを克服する。
論文 参考訳(メタデータ) (2021-12-03T13:31:59Z) - Self-Distilled Self-Supervised Representation Learning [35.60243157730165]
自己教師付き学習における最先端のフレームワークは、トランスフォーマーベースのモデルを完全に活用することでパフォーマンスが向上することを示した。
本研究では, コントラッシブ・ロスにより, 中間表現が最終層から学習できるようにすることにより, さらにこれを活用する。
我々の手法であるSDSSL(Self-Distilled Self-Supervised Learning)は,様々なタスクやデータセット上でのViTを用いた競争ベースライン(SimCLR, BYOL, MoCo v3)より優れています。
論文 参考訳(メタデータ) (2021-11-25T07:52:36Z) - Self-Supervised Class Incremental Learning [51.62542103481908]
既存のクラスインクリメンタルラーニング(CIL)手法は、データラベルに敏感な教師付き分類フレームワークに基づいている。
新しいクラスデータに基づいて更新する場合、それらは破滅的な忘れがちである。
本稿では,SSCILにおける自己指導型表現学習のパフォーマンスを初めて考察する。
論文 参考訳(メタデータ) (2021-11-18T06:58:19Z) - SPLADE v2: Sparse Lexical and Expansion Model for Information Retrieval [11.38022203865326]
SPLADEモデルは、最先端の高密度かつスパースなアプローチに関して、高度にスパースな表現と競争結果を提供する。
我々は、プール機構を変更し、文書拡張のみに基づいてモデルをベンチマークし、蒸留で訓練されたモデルを導入する。
全体として、SPLADEはTREC DL 2019のNDCG@10で9ドル以上のゲインで大幅に改善され、BEIRベンチマークで最先端の結果が得られた。
論文 参考訳(メタデータ) (2021-09-21T10:43:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。