論文の概要: Gaussian Processes on Hypergraphs
- arxiv url: http://arxiv.org/abs/2106.01982v1
- Date: Thu, 3 Jun 2021 16:58:05 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-04 12:15:11.276347
- Title: Gaussian Processes on Hypergraphs
- Title(参考訳): ハイパーグラフのガウス過程
- Authors: Thomas Pinder, Kathryn Turnbull, Christopher Nemeth, David Leslie
- Abstract要約: ハイパーグラフの頂点上でMatern Gaussian Process (GP) を導出する。
本稿では,ハイパーグラフGPを用いてハイパーグラフの頂点を潜在空間に埋め込む枠組みを提案する。
実世界の3つの課題に対して,我々のフレームワークの有用性を実証する。
- 参考スコア(独自算出の注目度): 2.007262412327553
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We derive a Matern Gaussian process (GP) on the vertices of a hypergraph.
This enables estimation of regression models of observed or latent values
associated with the vertices, in which the correlation and uncertainty
estimates are informed by the hypergraph structure. We further present a
framework for embedding the vertices of a hypergraph into a latent space using
the hypergraph GP. Finally, we provide a scheme for identifying a small number
of representative inducing vertices that enables scalable inference through
sparse GPs. We demonstrate the utility of our framework on three challenging
real-world problems that concern multi-class classification for the political
party affiliation of legislators on the basis of voting behaviour,
probabilistic matrix factorisation of movie reviews, and embedding a hypergraph
of animals into a low-dimensional latent space.
- Abstract(参考訳): 我々はハイパーグラフの頂点上の母性ガウス過程(gp)を導出する。
これにより、頂点に関連する観測値や潜在値の回帰モデルの推定が可能となり、相関や不確実性の推定はハイパーグラフ構造によって行われる。
さらに,ハイパーグラフGPを用いてハイパーグラフの頂点を潜在空間に埋め込むためのフレームワークを提案する。
最後に,分散gpsによるスケーラブルな推論を可能にする,少数の代表的な頂点を同定するためのスキームを提案する。
本研究では,投票行動や映画レビューの確率的行列因子化,低次元潜在空間への動物ハイパーグラフの埋め込みなどに基づいて,議員の政党所属に関する多種分類を課題とする3つの実世界問題に対する枠組みの有用性を実証する。
関連論文リスト
- Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
本稿では,属性付きグラフデータに対する新しいDeep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE)を提案する。
提案手法は,最先端のベースラインアルゴリズムを,一般的なデータセット間でのダウンストリームタスクの差を大きく越える。
論文 参考訳(メタデータ) (2024-01-12T17:57:07Z) - Hypergraph Transformer for Semi-Supervised Classification [50.92027313775934]
我々は新しいハイパーグラフ学習フレームワークHyperGraph Transformer(HyperGT)を提案する。
HyperGTはTransformerベースのニューラルネットワークアーキテクチャを使用して、すべてのノードとハイパーエッジのグローバル相関を効果的に検討する。
局所接続パターンを保ちながら、グローバルな相互作用を効果的に組み込むことで、包括的なハイパーグラフ表現学習を実現する。
論文 参考訳(メタデータ) (2023-12-18T17:50:52Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
自己指導型自己学習(BOURNE)に基づく新しい統合グラフ異常検出フレームワークを提案する。
ノードとエッジ間のコンテキスト埋め込みを交換することで、ノードとエッジの異常を相互に検出できる。
BOURNEは、負のサンプリングを必要としないため、大きなグラフを扱う際の効率を高めることができる。
論文 参考訳(メタデータ) (2023-07-28T00:44:57Z) - From Hypergraph Energy Functions to Hypergraph Neural Networks [94.88564151540459]
パラメータ化されたハイパーグラフ正規化エネルギー関数の表現型族を示す。
次に、これらのエネルギーの最小化がノード埋め込みとして効果的に機能することを実証する。
提案した双レベルハイパーグラフ最適化と既存のGNNアーキテクチャを共通的に用いている。
論文 参考訳(メタデータ) (2023-06-16T04:40:59Z) - Hypergraphs with Edge-Dependent Vertex Weights: Spectral Clustering
based on the 1-Laplacian [24.88719567631694]
エッジ依存重みを含むハイパーグラフの1-ラプラシアンを定義するフレキシブルなフレームワークを提案する。
フレームワーク内の特別な場合、対応するハイパーグラフ1-ラプラシアンが関連するグラフの1-ラプラシアンと同値であることを示す。
論文 参考訳(メタデータ) (2023-04-30T12:21:42Z) - OrthoReg: Improving Graph-regularized MLPs via Orthogonality
Regularization [66.30021126251725]
グラフニューラルネットワーク(GNN)は現在、グラフ構造データのモデリングにおいて支配的である。
グラフ正規化ネットワーク(GR-MLP)はグラフ構造情報をモデル重みに暗黙的に注入するが、その性能はほとんどのタスクにおいてGNNとほとんど一致しない。
GR-MLPは,最大数個の固有値が埋め込み空間を支配する現象である次元崩壊に苦しむことを示す。
次元崩壊問題を緩和する新しいGR-MLPモデルであるOrthoRegを提案する。
論文 参考訳(メタデータ) (2023-01-31T21:20:48Z) - Hypergraph Convolutional Networks via Equivalency between Hypergraphs
and Undirected Graphs [59.71134113268709]
本稿では,EDVWおよびEIVWハイパーグラフを処理可能な一般学習フレームワークであるGeneral Hypergraph Spectral Convolution(GHSC)を提案する。
本稿では,提案するフレームワークが最先端の性能を達成できることを示す。
ソーシャルネットワーク分析,視覚的客観的分類,タンパク質学習など,様々な分野の実験により,提案手法が最先端の性能を達成できることが実証された。
論文 参考訳(メタデータ) (2022-03-31T10:46:47Z) - HyperSF: Spectral Hypergraph Coarsening via Flow-based Local Clustering [9.438207505148947]
本稿では,ハイパーグラフのスペクトル(構造)特性を保存するために,効率的なスペクトルハイパーグラフ粗大化手法を提案する。
提案手法は,ハイパーグラフクラスタリングのマルチウェイコンダクタンスを大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2021-08-17T22:20:23Z) - Co-clustering Vertices and Hyperedges via Spectral Hypergraph
Partitioning [18.800058655626696]
エッジ依存重み付きハイパーグラフの頂点とハイパーエッジを協調クラスタリングする新しい手法を提案する。
本手法では,EDVWを用いたランダムウォークを利用してハイパーグラフのLaplacianを構築し,そのスペクトル特性を用いて頂点とハイパーエッジを共通空間に埋め込む。
次に、これらの埋め込みをクラスタ化して、提案する共同クラスタ化手法、特にデータエンティティと機能の同時クラスタリングを必要とするアプリケーションとの関連性を得る。
論文 参考訳(メタデータ) (2021-02-19T21:47:39Z) - Generative hypergraph clustering: from blockmodels to modularity [26.99290024958576]
異質なノード度とエッジサイズを持つクラスタ化ハイパーグラフの表現的生成モデルを提案する。
我々は,100万ノードの合成ハイパーグラフを用いた実験など,ハイパーグラフ・ルーバインは高度にスケーラブルであることを示す。
このモデルを用いて,学校連絡ネットワークにおける高次構造の異なるパターン,米国議会法案共同提案,米国議会委員会,共同購入行動における製品カテゴリ,ホテルロケーションを分析した。
論文 参考訳(メタデータ) (2021-01-24T00:25:22Z) - Learning over Families of Sets -- Hypergraph Representation Learning for
Higher Order Tasks [12.28143554382742]
可変サイズのハイパーエッジの表現を実証的に表現するためのハイパーグラフニューラルネットワークを開発した。
複数の実世界のハイパーグラフデータセットのパフォーマンスを評価し、最新モデルよりも一貫性のある大幅な精度向上を実証します。
論文 参考訳(メタデータ) (2021-01-19T18:37:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。