Attack Prediction using Hidden Markov Model
- URL: http://arxiv.org/abs/2106.02012v1
- Date: Thu, 3 Jun 2021 17:32:06 GMT
- Title: Attack Prediction using Hidden Markov Model
- Authors: Shuvalaxmi Dass, Prerit Datta, Akbar Siami Namin
- Abstract summary: We propose the use of Hidden Markov Model (HMM) to predict the family of related attacks.
We have built an HMM-based prediction model and implemented our proposed approach using Viterbi algorithm.
As a proof of concept and also to demonstrate the performance of the model, we have conducted a case study on predicting a family of attacks called Action Spoofing.
- Score: 2.2559617939136505
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is important to predict any adversarial attacks and their types to enable
effective defense systems. Often it is hard to label such activities as
malicious ones without adequate analytical reasoning. We propose the use of
Hidden Markov Model (HMM) to predict the family of related attacks. Our
proposed model is based on the observations often agglomerated in the form of
log files and from the target or the victim's perspective. We have built an
HMM-based prediction model and implemented our proposed approach using Viterbi
algorithm, which generates a sequence of states corresponding to stages of a
particular attack. As a proof of concept and also to demonstrate the
performance of the model, we have conducted a case study on predicting a family
of attacks called Action Spoofing.
Related papers
- MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
We propose a novel, yet elegantly simple approach for detecting adversarial samples in Vision-Language Models.
Our method leverages Text-to-Image (T2I) models to generate images based on captions produced by target VLMs.
Empirical evaluations conducted on different datasets validate the efficacy of our approach.
arXiv Detail & Related papers (2024-06-13T15:55:04Z) - Model Stealing Attack against Recommender System [85.1927483219819]
Some adversarial attacks have achieved model stealing attacks against recommender systems.
In this paper, we constrain the volume of available target data and queries and utilize auxiliary data, which shares the item set with the target data, to promote model stealing attacks.
arXiv Detail & Related papers (2023-12-18T05:28:02Z) - Adversarial Backdoor Attack by Naturalistic Data Poisoning on Trajectory
Prediction in Autonomous Driving [18.72382517467458]
We propose a novel adversarial backdoor attack against trajectory prediction models.
Our attack affects the victim at training time via naturalistic, hence stealthy, poisoned samples crafted using a novel two-step approach.
We show that the proposed attack is highly effective, as it can significantly hinder the performance of prediction models.
arXiv Detail & Related papers (2023-06-27T19:15:06Z) - Ensemble-based Blackbox Attacks on Dense Prediction [16.267479602370543]
We show that a carefully designed ensemble can create effective attacks for a number of victim models.
In particular, we show that normalization of the weights for individual models plays a critical role in the success of the attacks.
Our proposed method can also generate a single perturbation that can fool multiple blackbox detection and segmentation models simultaneously.
arXiv Detail & Related papers (2023-03-25T00:08:03Z) - Targeted Attacks on Timeseries Forecasting [0.6719751155411076]
We propose a novel formulation of Directional, Amplitudinal, and Temporal targeted adversarial attacks on time series forecasting models.
These targeted attacks create a specific impact on the amplitude and direction of the output prediction.
Our experimental results show how targeted attacks on time series models are viable and are more powerful in terms of statistical similarity.
arXiv Detail & Related papers (2023-01-27T06:09:42Z) - Understanding the Vulnerability of Skeleton-based Human Activity Recognition via Black-box Attack [53.032801921915436]
Human Activity Recognition (HAR) has been employed in a wide range of applications, e.g. self-driving cars.
Recently, the robustness of skeleton-based HAR methods have been questioned due to their vulnerability to adversarial attacks.
We show such threats exist, even when the attacker only has access to the input/output of the model.
We propose the very first black-box adversarial attack approach in skeleton-based HAR called BASAR.
arXiv Detail & Related papers (2022-11-21T09:51:28Z) - Towards Generating Adversarial Examples on Mixed-type Data [32.41305735919529]
We propose a novel attack algorithm M-Attack, which can effectively generate adversarial examples in mixed-type data.
Based on M-Attack, attackers can attempt to mislead the targeted classification model's prediction, by only slightly perturbing both the numerical and categorical features in the given data samples.
Our generated adversarial examples can evade potential detection models, which makes the attack indeed insidious.
arXiv Detail & Related papers (2022-10-17T20:17:21Z) - A Unified Evaluation of Textual Backdoor Learning: Frameworks and
Benchmarks [72.7373468905418]
We develop an open-source toolkit OpenBackdoor to foster the implementations and evaluations of textual backdoor learning.
We also propose CUBE, a simple yet strong clustering-based defense baseline.
arXiv Detail & Related papers (2022-06-17T02:29:23Z) - Adversarial Attack and Defense of Structured Prediction Models [58.49290114755019]
In this paper, we investigate attacks and defenses for structured prediction tasks in NLP.
The structured output of structured prediction models is sensitive to small perturbations in the input.
We propose a novel and unified framework that learns to attack a structured prediction model using a sequence-to-sequence model.
arXiv Detail & Related papers (2020-10-04T15:54:03Z) - Improving Robustness to Model Inversion Attacks via Mutual Information
Regularization [12.079281416410227]
This paper studies defense mechanisms against model inversion (MI) attacks.
MI is a type of privacy attacks aimed at inferring information about the training data distribution given the access to a target machine learning model.
We propose the Mutual Information Regularization based Defense (MID) against MI attacks.
arXiv Detail & Related papers (2020-09-11T06:02:44Z) - Defense for Black-box Attacks on Anti-spoofing Models by Self-Supervised
Learning [71.17774313301753]
We explore the robustness of self-supervised learned high-level representations by using them in the defense against adversarial attacks.
Experimental results on the ASVspoof 2019 dataset demonstrate that high-level representations extracted by Mockingjay can prevent the transferability of adversarial examples.
arXiv Detail & Related papers (2020-06-05T03:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.