論文の概要: Analysis of the robustness of NMF algorithms
- arxiv url: http://arxiv.org/abs/2106.02213v1
- Date: Fri, 4 Jun 2021 02:35:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-08 07:08:03.140215
- Title: Analysis of the robustness of NMF algorithms
- Title(参考訳): NMFアルゴリズムのロバスト性の解析
- Authors: Alex D\'iaz, Damian Steele
- Abstract要約: 本研究では,L2-norm,L1-norm,L2,1-normの3つの非負行列分解法について検討した。
我々の目的は、これらの異なるアプローチのパフォーマンスと、現実世界のアプリケーションにおけるそれらの堅牢性を確立することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We examine three non-negative matrix factorization techniques; L2-norm,
L1-norm, and L2,1-norm. Our aim is to establish the performance of these
different approaches, and their robustness in real-world applications such as
feature selection while managing computational complexity, sensitivity to noise
and more. We thoroughly examine each approach from a theoretical perspective,
and examine the performance of each using a series of experiments drawing on
both the ORL and YaleB datasets. We examine the Relative Reconstruction Errors
(RRE), Average Accuracy and Normalized Mutual Information (NMI) as criteria
under a range of simulated noise scenarios.
- Abstract(参考訳): l2-norm,l1-norm,l2,1-normの3つの非負行列分解法を検討した。
我々の目的は、これらの異なるアプローチの性能を確立し、計算複雑性やノイズへの敏感さなどを管理しながら、機能選択のような現実世界のアプリケーションにおける堅牢性を確立することである。
理論的観点から各アプローチを徹底的に検討し,ORLデータセットとYaleBデータセットを併用した一連の実験により,それぞれの性能について検討する。
本稿では,RRE(Relative Reconstruction Errors),平均精度,正規化相互情報(Nocalized Mutual Information,NMI)を,様々な騒音シナリオの基準として検討する。
関連論文リスト
- Interpetable Target-Feature Aggregation for Multi-Task Learning based on Bias-Variance Analysis [53.38518232934096]
マルチタスク学習(MTL)は、タスク間の共有知識を活用し、一般化とパフォーマンスを改善するために設計された強力な機械学習パラダイムである。
本稿では,タスククラスタリングと特徴変換の交点におけるMTL手法を提案する。
両段階において、鍵となる側面は減った目標と特徴の解釈可能性を維持することである。
論文 参考訳(メタデータ) (2024-06-12T08:30:16Z) - Regularized Projection Matrix Approximation with Applications to Community Detection [1.3761665705201904]
本稿では,アフィニティ行列からクラスタ情報を復元するための正規化プロジェクション行列近似フレームワークを提案する。
3つの異なるペナルティ関数について検討し, それぞれが有界, 正, スパースシナリオに対応するように調整した。
合成および実世界の両方のデータセットで行った数値実験により、我々の正規化射影行列近似アプローチはクラスタリング性能において最先端の手法を著しく上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2024-05-26T15:18:22Z) - Provably Efficient Information-Directed Sampling Algorithms for Multi-Agent Reinforcement Learning [50.92957910121088]
本研究は,情報指向サンプリング(IDS)の原理に基づくマルチエージェント強化学習(MARL)のための新しいアルゴリズムの設計と解析を行う。
エピソディックな2プレーヤゼロサムMGに対して、ナッシュ平衡を学習するための3つのサンプル効率アルゴリズムを提案する。
我々は、Reg-MAIDSをマルチプレイヤー汎用MGに拡張し、ナッシュ平衡または粗相関平衡をサンプル効率良く学習できることを証明する。
論文 参考訳(メタデータ) (2024-04-30T06:48:56Z) - Analyze the robustness of three NMF algorithms (Robust NMF with L1 norm,
L2-1 norm NMF, L2 NMF) [5.708964539699851]
本研究では,非負行列分解(NMF)の雑音に対する頑健性について検討した。
具体的には、L1 NMF、L2 NMF、L21 NMFという3つの異なるNMFアルゴリズムを採用する。
実験では、ルート平均二乗誤差(RMSE)、精度(ACC)、正規化相互情報(NMI)など、様々な評価指標を用いて、異なるNMFアルゴリズムの性能を評価する。
論文 参考訳(メタデータ) (2023-12-03T11:39:04Z) - Generalized Oversampling for Learning from Imbalanced datasets and
Associated Theory [0.0]
教師あり学習では、実際の不均衡なデータセットに直面することが多い。
本稿では,カーネル密度推定に基づくデータ拡張手法であるGOLIATHアルゴリズムを提案する。
我々は,不均衡な回帰状況下でのGOLIATHアルゴリズムの性能を評価する。
論文 参考訳(メタデータ) (2023-08-05T23:08:08Z) - Maximize to Explore: One Objective Function Fusing Estimation, Planning,
and Exploration [87.53543137162488]
我々はtextttMEX というオンライン強化学習(オンラインRL)フレームワークを提案する。
textttMEXは、自動的に探索エクスプロイトのバランスをとりながら、見積もりと計画コンポーネントを統合する。
様々な MuJoCo 環境では,ベースラインを安定的なマージンで上回り,十分な報酬を得られる。
論文 参考訳(メタデータ) (2023-05-29T17:25:26Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
既存の強化学習アルゴリズムは、計算的難易度、強い統計的仮定、最適なサンプルの複雑さに悩まされている。
所望の精度レベルに対して、レート最適サンプル複雑性を実現するための、最初の計算効率の良いアルゴリズムを提供する。
我々のアルゴリズムMusIKは、多段階の逆運動学に基づく表現学習と体系的な探索を組み合わせる。
論文 参考訳(メタデータ) (2023-04-12T14:51:47Z) - GEC: A Unified Framework for Interactive Decision Making in MDP, POMDP,
and Beyond [101.5329678997916]
対話型意思決定の一般的な枠組みの下で, サンプル高能率強化学習(RL)について検討した。
本稿では,探索とエクスプロイトの基本的なトレードオフを特徴付ける,新しい複雑性尺度である一般化エルダー係数(GEC)を提案する。
低 GEC の RL 問題は非常にリッチなクラスであり、これは低ベルマン楕円体次元問題、双線型クラス、低証人ランク問題、PO-双線型クラス、一般化正規PSR を仮定する。
論文 参考訳(メタデータ) (2022-11-03T16:42:40Z) - Pessimistic Minimax Value Iteration: Provably Efficient Equilibrium
Learning from Offline Datasets [101.5329678997916]
両プレイヤーゼロサムマルコフゲーム(MG)をオフライン環境で研究する。
目標は、事前収集されたデータセットに基づいて、近似的なナッシュ均衡(NE)ポリシーペアを見つけることである。
論文 参考訳(メタデータ) (2022-02-15T15:39:30Z) - A Multi-objective Evolutionary Algorithm for EEG Inverse Problem [0.0]
本稿では,脳波逆問題に対する多目的アプローチを提案する。
この問題の特徴から、この代替案にはそれを解決するための進化戦略が含まれていた。
その結果、分散ソリューションを推定するために、MOEAAR(Anatomical Restrictions)に基づく多目的進化的アルゴリズムが得られた。
論文 参考訳(メタデータ) (2021-07-21T19:37:27Z) - A Robust Matching Pursuit Algorithm Using Information Theoretic Learning [37.968665739578185]
情報理論学習(ITL)に基づく新しいOMPアルゴリズムの開発
シミュレーションおよび実世界の両方のデータに対する実験結果は、データ復元、画像再構成、分類において提案したOMPアルゴリズムの優位性を一貫して示している。
論文 参考訳(メタデータ) (2020-05-10T01:36:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。