Self-supervised network distillation: an effective approach to exploration in sparse reward environments
- URL: http://arxiv.org/abs/2302.11563v4
- Date: Mon, 10 Jun 2024 19:00:08 GMT
- Title: Self-supervised network distillation: an effective approach to exploration in sparse reward environments
- Authors: Matej Pecháč, Michal Chovanec, Igor Farkaš,
- Abstract summary: Reinforcement learning can train an agent to behave in an environment according to a predesigned reward function.
The solution to such a problem may be to equip the agent with an intrinsic motivation that will provide informed exploration.
We present Self-supervised Network Distillation (SND), a class of intrinsic motivation algorithms based on the distillation error as a novelty indicator.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning can solve decision-making problems and train an agent to behave in an environment according to a predesigned reward function. However, such an approach becomes very problematic if the reward is too sparse and so the agent does not come across the reward during the environmental exploration. The solution to such a problem may be to equip the agent with an intrinsic motivation that will provide informed exploration during which the agent is likely to also encounter external reward. Novelty detection is one of the promising branches of intrinsic motivation research. We present Self-supervised Network Distillation (SND), a class of intrinsic motivation algorithms based on the distillation error as a novelty indicator, where the predictor model and the target model are both trained. We adapted three existing self-supervised methods for this purpose and experimentally tested them on a set of ten environments that are considered difficult to explore. The results show that our approach achieves faster growth and higher external reward for the same training time compared to the baseline models, which implies improved exploration in a very sparse reward environment. In addition, the analytical methods we applied provide valuable explanatory insights into our proposed models.
Related papers
- Automatic Intrinsic Reward Shaping for Exploration in Deep Reinforcement
Learning [55.2080971216584]
We present AIRS: Automatic Intrinsic Reward Shaping that intelligently and adaptively provides high-quality intrinsic rewards to enhance exploration in reinforcement learning (RL)
We develop an intrinsic reward toolkit to provide efficient and reliable implementations of diverse intrinsic reward approaches.
arXiv Detail & Related papers (2023-01-26T01:06:46Z) - Intrinsic Motivation in Model-based Reinforcement Learning: A Brief
Review [77.34726150561087]
This review considers the existing methods for determining intrinsic motivation based on the world model obtained by the agent.
The proposed unified framework describes the architecture of agents using a world model and intrinsic motivation to improve learning.
arXiv Detail & Related papers (2023-01-24T15:13:02Z) - Curiosity-Driven Multi-Agent Exploration with Mixed Objectives [7.247148291603988]
Intrinsic rewards have been increasingly used to mitigate the sparse reward problem in single-agent reinforcement learning.
Curiosity-driven exploration is a simple yet efficient approach that quantifies this novelty as the prediction error of the agent's curiosity module.
We show here, however, that naively using this curiosity-driven approach to guide exploration in sparse reward cooperative multi-agent environments does not consistently lead to improved results.
arXiv Detail & Related papers (2022-10-29T02:45:38Z) - GAN-based Intrinsic Exploration For Sample Efficient Reinforcement
Learning [0.0]
We propose a Geneversarative Adversarial Network-based Intrinsic Reward Module that learns the distribution of the observed states and sends an intrinsic reward that is computed as high for states that are out of distribution.
We evaluate our approach in Super Mario Bros for a no reward setting and in Montezuma's Revenge for a sparse reward setting and show that our approach is indeed capable of exploring efficiently.
arXiv Detail & Related papers (2022-06-28T19:16:52Z) - Information is Power: Intrinsic Control via Information Capture [110.3143711650806]
We argue that a compact and general learning objective is to minimize the entropy of the agent's state visitation estimated using a latent state-space model.
This objective induces an agent to both gather information about its environment, corresponding to reducing uncertainty, and to gain control over its environment, corresponding to reducing the unpredictability of future world states.
arXiv Detail & Related papers (2021-12-07T18:50:42Z) - Focus on Impact: Indoor Exploration with Intrinsic Motivation [45.97756658635314]
In this work, we propose to train a model with a purely intrinsic reward signal to guide exploration.
We include a neural-based density model and replace the traditional count-based regularization with an estimated pseudo-count of previously visited states.
We also show that a robot equipped with the proposed approach seamlessly adapts to point-goal navigation and real-world deployment.
arXiv Detail & Related papers (2021-09-14T18:00:07Z) - Online reinforcement learning with sparse rewards through an active
inference capsule [62.997667081978825]
This paper introduces an active inference agent which minimizes the novel free energy of the expected future.
Our model is capable of solving sparse-reward problems with a very high sample efficiency.
We also introduce a novel method for approximating the prior model from the reward function, which simplifies the expression of complex objectives.
arXiv Detail & Related papers (2021-06-04T10:03:36Z) - Self-Supervised Exploration via Latent Bayesian Surprise [4.088019409160893]
In this work, we propose a curiosity-based bonus as intrinsic reward for Reinforcement Learning.
We extensively evaluate our model by measuring the agent's performance in terms of environment exploration.
Our model is cheap and empirically shows state-of-the-art performance on several problems.
arXiv Detail & Related papers (2021-04-15T14:40:16Z) - Variational Dynamic for Self-Supervised Exploration in Deep Reinforcement Learning [12.76337275628074]
In this work, we propose a variational dynamic model based on the conditional variational inference to model the multimodality andgenerativeity.
We derive an upper bound of the negative log-likelihood of the environmental transition and use such an upper bound as the intrinsic reward for exploration.
Our method outperforms several state-of-the-art environment model-based exploration approaches.
arXiv Detail & Related papers (2020-10-17T09:54:51Z) - Maximizing Information Gain in Partially Observable Environments via
Prediction Reward [64.24528565312463]
This paper tackles the challenge of using belief-based rewards for a deep RL agent.
We derive the exact error between negative entropy and the expected prediction reward.
This insight provides theoretical motivation for several fields using prediction rewards.
arXiv Detail & Related papers (2020-05-11T08:13:49Z) - RIDE: Rewarding Impact-Driven Exploration for Procedurally-Generated
Environments [15.736899098702972]
We propose a novel type of intrinsic reward which encourages the agent to take actions that lead to significant changes in its learned state representation.
We evaluate our method on multiple challenging procedurally-generated tasks in MiniGrid.
arXiv Detail & Related papers (2020-02-27T18:03:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.