Quantum optimization via four-body Rydberg gates
- URL: http://arxiv.org/abs/2106.02663v1
- Date: Fri, 4 Jun 2021 18:33:09 GMT
- Title: Quantum optimization via four-body Rydberg gates
- Authors: Clemens Dlaska, Kilian Ender, Glen Bigan Mbeng, Andreas Kruckenhauser,
Wolfgang Lechner, Rick van Bijnen
- Abstract summary: We propose and analyze a fast, high fidelity four-body Rydberg parity gate.
Our gate relies on onetime-optimized adiabatic laser pulses and is fully programmable by adjusting two hold-times during operation.
We demonstrate an implementation of the quantum approximate optimization algorithm (QAOA) for a small scale test problem.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is a large ongoing research effort towards obtaining a quantum
advantage in the solution of combinatorial optimization problems on near-term
quantum devices. A particularly promising platform for testing and developing
quantum optimization algorithms are arrays of trapped neutral atoms,
laser-coupled to highly excited Rydberg states. However, encoding combinatorial
optimization problems in atomic arrays is challenging due to the limited
inter-qubit connectivity given by their native finite-range interactions. Here
we propose and analyze a fast, high fidelity four-body Rydberg parity gate,
enabling a direct and straightforward implementation of the
Lechner-Hauke-Zoller (LHZ) scheme and its recent generalization, the parity
architecture, a scalable architecture for encoding arbitrarily connected
interaction graphs. Our gate relies on onetime-optimized adiabatic laser pulses
and is fully programmable by adjusting two hold-times during operation. We
numerically demonstrate an implementation of the quantum approximate
optimization algorithm (QAOA) for a small scale test problem. Our approach
allows for efficient execution of variational optimization steps with a
constant number of system manipulations, independent of the system size, thus
paving the way for experimental investigations of QAOA beyond the reach of
numerical simulations.
Related papers
- Performant near-term quantum combinatorial optimization [1.1999555634662633]
We present a variational quantum algorithm for solving optimization problems with linear-depth circuits.
Our algorithm uses an ansatz composed of Hamiltonian generators designed to control each term in the target quantum function.
We conclude our performant and resource-minimal approach is a promising candidate for potential quantum computational advantages.
arXiv Detail & Related papers (2024-04-24T18:49:07Z) - Quantum Circuit Optimization through Iteratively Pre-Conditioned
Gradient Descent [0.4915744683251151]
iteratively preconditioned gradient descent (IPG) for optimizing quantum circuits and demonstrate performance speedups for state preparation and implementation of quantum algorithmics.
We show an improvement in fidelity by a factor of $104$ for preparing a 4-qubit W state and a maximally entangled 5-qubit GHZ state compared to other commonly used classicals tuning the same ansatz.
We also show gains for optimizing a unitary for a quantum Fourier transform using IPG, and report results of running such optimized circuits on IonQ's quantum processing unit (QPU)
arXiv Detail & Related papers (2023-09-18T17:30:03Z) - Efficient DCQO Algorithm within the Impulse Regime for Portfolio
Optimization [41.94295877935867]
We propose a faster digital quantum algorithm for portfolio optimization using the digitized-counterdiabatic quantum optimization (DCQO) paradigm.
Our approach notably reduces the circuit depth requirement of the algorithm and enhances the solution accuracy, making it suitable for current quantum processors.
We experimentally demonstrate the advantages of our protocol using up to 20 qubits on an IonQ trapped-ion quantum computer.
arXiv Detail & Related papers (2023-08-29T17:53:08Z) - Compiling Quantum Circuits for Dynamically Field-Programmable Neutral Atoms Array Processors [5.012570785656963]
Dynamically field-programmable qubit arrays (DPQA) have emerged as a promising platform for quantum information processing.
In this paper, we consider a DPQA architecture that contains multiple arrays and supports 2D array movements.
We show that our DPQA-based compiled circuits feature reduced scaling overhead compared to a grid fixed architecture.
arXiv Detail & Related papers (2023-06-06T08:13:10Z) - Hardware-Conscious Optimization of the Quantum Toffoli Gate [11.897854272643634]
This manuscript expands the analytical and numerical approaches for optimizing quantum circuits at this abstraction level.
We present a procedure for combining the strengths of analytical native gate-level optimization with numerical optimization.
Our optimized Toffoli gate implementation demonstrates an $18%$ reduction in infidelity compared with the canonical implementation.
arXiv Detail & Related papers (2022-09-06T17:29:22Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
We quantify scaling of the expected resource requirements by optimized circuits for hardware architectures with varying levels of connectivity.
We show the number of measurements, and hence total time to synthesizing solution, grows exponentially in problem size and problem graph degree.
These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
arXiv Detail & Related papers (2022-01-06T21:02:30Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Compilation of Fault-Tolerant Quantum Heuristics for Combinatorial
Optimization [0.14755786263360526]
We explore which quantum algorithms for optimization might be most practical to try out on a small fault-tolerant quantum computer.
Our results discourage the notion that any quantum optimization realizing only a quadratic speedup will achieve an advantage over classical algorithms.
arXiv Detail & Related papers (2020-07-14T22:54:04Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.