Variational Quantum Multi-Objective Optimization
- URL: http://arxiv.org/abs/2312.14151v3
- Date: Tue, 12 Nov 2024 19:00:25 GMT
- Title: Variational Quantum Multi-Objective Optimization
- Authors: Linus Ekstrom, Hao Wang, Sebastian Schmitt,
- Abstract summary: We present a variational quantum optimization algorithm to solve discrete multi-objective optimization problems on quantum computers.
We show the effectiveness of the proposed algorithm on several benchmark problems with up to five objectives.
- Score: 5.381539115778766
- License:
- Abstract: Solving combinatorial optimization problems on near-term quantum devices has gained a lot of attraction in recent years. Currently, most works have focused on single-objective problems, whereas many real-world applications need to consider multiple, mostly conflicting objectives, such as cost and quality. We present a variational quantum optimization algorithm to solve discrete multi-objective optimization problems on quantum computers. The proposed quantum multi-objective optimization (QMOO) algorithm incorporates all cost Hamiltonians representing the classical objective functions in the quantum circuit and produces a quantum state consisting of Pareto-optimal solutions in superposition. From this state we retrieve a set of solutions and utilize the widely applied hypervolume indicator to determine its quality as an approximation to the Pareto-front. The variational parameters of the QMOO circuit are tuned by maximizing the hypervolume indicator in a quantum-classical hybrid fashion. We show the effectiveness of the proposed algorithm on several benchmark problems with up to five objectives. We investigate the influence of the classical optimizer, the circuit depth and compare to results from classical optimization algorithms. We find that the algorithm is robust to shot noise and produces good results with as low as 128 measurement shots in each iteration. These promising result open the perspective to run the algorithm on near-term quantum hardware.
Related papers
- Performant near-term quantum combinatorial optimization [1.1999555634662633]
We present a variational quantum algorithm for solving optimization problems with linear-depth circuits.
Our algorithm uses an ansatz composed of Hamiltonian generators designed to control each term in the target quantum function.
We conclude our performant and resource-minimal approach is a promising candidate for potential quantum computational advantages.
arXiv Detail & Related papers (2024-04-24T18:49:07Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Solving non-native combinatorial optimization problems using hybrid
quantum-classical algorithms [0.0]
Combinatorial optimization is a challenging problem applicable in a wide range of fields from logistics to finance.
Quantum computing has been used to attempt to solve these problems using a range of algorithms.
This work presents a framework to overcome these challenges by integrating quantum and classical resources with a hybrid approach.
arXiv Detail & Related papers (2024-03-05T17:46:04Z) - Randomized Benchmarking of Local Zeroth-Order Optimizers for Variational
Quantum Systems [65.268245109828]
We compare the performance of classicals across a series of partially-randomized tasks.
We focus on local zeroth-orders due to their generally favorable performance and query-efficiency on quantum systems.
arXiv Detail & Related papers (2023-10-14T02:13:26Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
The Quantum Approximate Optimization Algorithm (QAOA) is a highly promising variational quantum algorithm that aims to solve intractable optimization problems.
This comprehensive review offers an overview of the current state of QAOA, encompassing its performance analysis in diverse scenarios.
We conduct a comparative study of selected QAOA extensions and variants, while exploring future prospects and directions for the algorithm.
arXiv Detail & Related papers (2023-06-15T15:28:12Z) - Analysis of The Vehicle Routing Problem Solved via Hybrid Quantum
Algorithms in Presence of Noisy Channels [0.0]
The objective is to plan routes of vehicles to deliver goods to a fixed number of customers with optimal efficiency.
We build a basic VRP solver for 3 and 4 cities using the variational quantum eigensolver on a fixed ansatz.
We find that the performance of the quantum algorithm depends heavily on what noise model is used.
arXiv Detail & Related papers (2022-05-13T11:29:12Z) - Performance comparison of optimization methods on variational quantum
algorithms [2.690135599539986]
Variational quantum algorithms (VQAs) offer a promising path towards using near-term quantum hardware for applications in academic and industrial research.
We study the performance of four commonly used gradient-free optimization methods: SLSQP, COBYLA, CMA-ES, and SPSA.
arXiv Detail & Related papers (2021-11-26T12:13:20Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Quantum mean value approximator for hard integer value problems [19.4417702222583]
We show that an optimization can be improved substantially by using an approximation rather than the exact expectation.
Together with efficient classical sampling algorithms, a quantum algorithm with minimal gate count can thus improve the efficiency of general integer-value problems.
arXiv Detail & Related papers (2021-05-27T13:03:52Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.