論文の概要: Differentially Private Deep Learning under the Fairness Lens
- arxiv url: http://arxiv.org/abs/2106.02674v1
- Date: Fri, 4 Jun 2021 19:10:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-08 18:26:42.456310
- Title: Differentially Private Deep Learning under the Fairness Lens
- Title(参考訳): フェアネスレンズによる個人的深層学習
- Authors: Cuong Tran, My H. Dinh, Ferdinando Fioretto
- Abstract要約: 微分プライバシー(DP)は、プライベート機械学習システムにとって重要なプライバシー強化技術である。
計算に個々の参加に伴うリスクを計測し、バウンドすることができる。
近年,DP学習システムは,個人集団の偏見や不公平性を悪化させる可能性が指摘されている。
- 参考スコア(独自算出の注目度): 34.28936739262812
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Differential Privacy (DP) is an important privacy-enhancing technology for
private machine learning systems. It allows to measure and bound the risk
associated with an individual participation in a computation. However, it was
recently observed that DP learning systems may exacerbate bias and unfairness
for different groups of individuals. This paper builds on these important
observations and sheds light on the causes of the disparate impacts arising in
the problem of differentially private empirical risk minimization. It focuses
on the accuracy disparity arising among groups of individuals in two
well-studied DP learning methods: output perturbation and differentially
private stochastic gradient descent. The paper analyzes which data and model
properties are responsible for the disproportionate impacts, why these aspects
are affecting different groups disproportionately and proposes guidelines to
mitigate these effects. The proposed approach is evaluated on several datasets
and settings.
- Abstract(参考訳): differential privacy (dp)は、プライベート機械学習システムにとって重要なプライバシー向上技術である。
これにより、計算に参加する個人に関わるリスクを計測し、制限することができる。
しかし,近年,DP学習システムによって個人集団の偏見や不公平性が増すことが観察された。
本稿は,これらの重要な観測結果を基にして,異なる個人的経験的リスク最小化問題に生じる異種影響の原因を考察する。
2つのよく研究されたDP学習手法(出力摂動と差分的確率勾配降下)において、個人間で生じる精度格差に焦点を当てた。
本稿では,不均等な影響の原因となるデータやモデル特性について分析し,その影響を緩和するためのガイドラインを提案する。
提案手法はいくつかのデータセットと設定で評価される。
関連論文リスト
- A Systematic and Formal Study of the Impact of Local Differential Privacy on Fairness: Preliminary Results [5.618541935188389]
差分プライバシー(DP)は、プライバシ保護機械学習(ML)アルゴリズムの主要なソリューションである。
近年の研究では、ローカルDPが個人の異なるサブグループに対するML予測に影響を及ぼすことが示されている。
ローカルDPの下でのMLモデルによる決定の公平性は,プライバシやデータ分布の異なるレベルにおいてどのように変化するかを検討する。
論文 参考訳(メタデータ) (2024-05-23T15:54:03Z) - Privacy at a Price: Exploring its Dual Impact on AI Fairness [24.650648702853903]
機械学習モデルにおける差分プライバシーは、予測精度に関して異なる階層群に不平等に影響を及ぼすことを示した。
これは公平性への懸念を招き、パフォーマンスのバイアスとして現れます。
微分プライベート勾配降下ML法における勾配クリッピングの実装は、DPノイズの公平性に対する負の影響を軽減することができる。
論文 参考訳(メタデータ) (2024-04-15T00:23:41Z) - SF-PATE: Scalable, Fair, and Private Aggregation of Teacher Ensembles [50.90773979394264]
本稿では、個人の機密情報のプライバシーを保護しつつ、差別的でない予測者の学習を可能にするモデルについて検討する。
提案モデルの主な特徴は、プライバシ保護とフェアモデルを作成するために、オフ・ザ・セルフと非プライベートフェアモデルの採用を可能にすることである。
論文 参考訳(メタデータ) (2022-04-11T14:42:54Z) - Post-processing of Differentially Private Data: A Fairness Perspective [53.29035917495491]
本稿では,ポストプロセッシングが個人やグループに異なる影響を与えることを示す。
差分的にプライベートなデータセットのリリースと、ダウンストリームの決定にそのようなプライベートなデータセットを使用するという、2つの重要な設定を分析している。
それは、異なる公正度尺度の下で(ほぼ)最適である新しい後処理機構を提案する。
論文 参考訳(メタデータ) (2022-01-24T02:45:03Z) - Partial sensitivity analysis in differential privacy [58.730520380312676]
それぞれの入力特徴が個人のプライバシ損失に与える影響について検討する。
プライベートデータベース上でのクエリに対する我々のアプローチを実験的に評価する。
また、合成データにおけるニューラルネットワークトレーニングの文脈における知見についても検討する。
論文 参考訳(メタデータ) (2021-09-22T08:29:16Z) - A Fairness Analysis on Private Aggregation of Teacher Ensembles [31.388212637482365]
PATE(Private Aggregation of Teacher Ensembles)は、機械学習の重要なフレームワークである。
本稿では、このプライバシー保護フレームワークが偏見と不公平を増すか否かを問う。
PATEは個人と個人のグループ間で精度の相違をもたらす可能性がある。
論文 参考訳(メタデータ) (2021-09-17T16:19:24Z) - Gradient Masking and the Underestimated Robustness Threats of
Differential Privacy in Deep Learning [0.0]
本稿では,ディファレンシャルプライバシ(DP)によるトレーニングが,幅広い敵対攻撃に対するモデル脆弱性に与える影響を実験的に評価する。
結果から、プライベートモデルは非プライベートモデルよりも堅牢ではなく、非プライベートモデルとプライベートモデルよりもDPモデル間のトランスファーが優れていることが示唆された。
論文 参考訳(メタデータ) (2021-05-17T16:10:54Z) - Robustness Threats of Differential Privacy [70.818129585404]
我々は、いくつかの設定で差分プライバシーをトレーニングしたネットワークが、非プライベートバージョンに比べてさらに脆弱であることを実験的に実証した。
本研究では,勾配クリッピングや雑音付加などのニューラルネットワークトレーニングの主成分が,モデルの堅牢性に与える影響について検討する。
論文 参考訳(メタデータ) (2020-12-14T18:59:24Z) - Differentially Private and Fair Deep Learning: A Lagrangian Dual
Approach [54.32266555843765]
本稿では,個人の機密情報のプライバシを保護するとともに,非差別的予測器の学習を可能にするモデルについて検討する。
この方法は、微分プライバシーの概念と、公正性制約を満たすニューラルネットワークの設計にラグランジアン双対性(Lagrangian duality)を用いることに依存している。
論文 参考訳(メタデータ) (2020-09-26T10:50:33Z) - Neither Private Nor Fair: Impact of Data Imbalance on Utility and
Fairness in Differential Privacy [5.416049433853457]
本研究では,データの不均衡レベルの違いが,モデルによる決定の正確性と公平性に与える影響について検討する。
私たちは、小さな不均衡やプライバシー保証の緩やかささえも、異なる影響を引き起こすことを実証しています。
論文 参考訳(メタデータ) (2020-09-10T18:35:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。