論文の概要: SoK: What Makes Private Learning Unfair?
- arxiv url: http://arxiv.org/abs/2501.14414v1
- Date: Fri, 24 Jan 2025 11:28:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:57:09.148381
- Title: SoK: What Makes Private Learning Unfair?
- Title(参考訳): SoK: プライベートラーニングを不公平にする理由
- Authors: Kai Yao, Marc Juarez,
- Abstract要約: 本稿では,異なるプライバシ保証を持つトレーニングモデルの異なる効果に寄与する要因について論じる。
トレーニングデータセットと基礎となる分布に関連する要因が,異なる影響の発生に決定的な役割を果たすことがわかった。
- 参考スコア(独自算出の注目度): 8.37060553485295
- License:
- Abstract: Differential privacy has emerged as the most studied framework for privacy-preserving machine learning. However, recent studies show that enforcing differential privacy guarantees can not only significantly degrade the utility of the model, but also amplify existing disparities in its predictive performance across demographic groups. Although there is extensive research on the identification of factors that contribute to this phenomenon, we still lack a complete understanding of the mechanisms through which differential privacy exacerbates disparities. The literature on this problem is muddled by varying definitions of fairness, differential privacy mechanisms, and inconsistent experimental settings, often leading to seemingly contradictory results. This survey provides the first comprehensive overview of the factors that contribute to the disparate effect of training models with differential privacy guarantees. We discuss their impact and analyze their causal role in such a disparate effect. Our analysis is guided by a taxonomy that categorizes these factors by their position within the machine learning pipeline, allowing us to draw conclusions about their interaction and the feasibility of potential mitigation strategies. We find that factors related to the training dataset and the underlying distribution play a decisive role in the occurrence of disparate impact, highlighting the need for research on these factors to address the issue.
- Abstract(参考訳): 差別化プライバシは、プライバシ保護機械学習の最も研究されているフレームワークとして浮上している。
しかし、近年の研究では、差分プライバシー保証の実施はモデルの実用性を著しく低下させるだけでなく、人口統計学的グループ間での予測性能における既存の格差を増幅する可能性があることが示されている。
この現象に寄与する要因の同定には広範な研究があるが、差分プライバシーが格差を悪化させるメカニズムについて完全には理解されていない。
この問題に関する文献は、公正性、差分プライバシー機構、矛盾する実験的な設定といった様々な定義に悩まされ、しばしば矛盾する結果をもたらす。
この調査は、異なるプライバシー保証を持つトレーニングモデルの異なる効果に寄与する要因について、最初の包括的な概要を提供する。
これらの影響について考察し、その影響の因果関係を解明する。
我々の分析は、これらの要因を機械学習パイプライン内の位置によって分類する分類学によって導かれ、それらの相互作用と潜在的な緩和戦略の可能性について結論を導き出すことができる。
トレーニングデータセットと基礎となる分布に関連する要因が,異なる影響の発生に決定的な役割を果たしていることが,これらの要因の研究の必要性を浮き彫りにしている。
関連論文リスト
- A Systematic and Formal Study of the Impact of Local Differential Privacy on Fairness: Preliminary Results [5.618541935188389]
差分プライバシー(DP)は、プライバシ保護機械学習(ML)アルゴリズムの主要なソリューションである。
近年の研究では、ローカルDPが個人の異なるサブグループに対するML予測に影響を及ぼすことが示されている。
ローカルDPの下でのMLモデルによる決定の公平性は,プライバシやデータ分布の異なるレベルにおいてどのように変化するかを検討する。
論文 参考訳(メタデータ) (2024-05-23T15:54:03Z) - Privacy at a Price: Exploring its Dual Impact on AI Fairness [24.650648702853903]
機械学習モデルにおける差分プライバシーは、予測精度に関して異なる階層群に不平等に影響を及ぼすことを示した。
これは公平性への懸念を招き、パフォーマンスのバイアスとして現れます。
微分プライベート勾配降下ML法における勾配クリッピングの実装は、DPノイズの公平性に対する負の影響を軽減することができる。
論文 参考訳(メタデータ) (2024-04-15T00:23:41Z) - Decoding Susceptibility: Modeling Misbelief to Misinformation Through a Computational Approach [61.04606493712002]
誤報に対する感受性は、観測不可能な不検証の主張に対する信念の度合いを記述している。
既存の感受性研究は、自己報告された信念に大きく依存している。
本稿では,ユーザの潜在感受性レベルをモデル化するための計算手法を提案する。
論文 参考訳(メタデータ) (2023-11-16T07:22:56Z) - A Causal Framework for Decomposing Spurious Variations [68.12191782657437]
我々はマルコフモデルとセミマルコフモデルの急激な変分を分解するツールを開発する。
突発効果の非パラメトリック分解を可能にする最初の結果を証明する。
説明可能なAIや公平なAIから、疫学や医学における疑問まで、いくつかの応用がある。
論文 参考訳(メタデータ) (2023-06-08T09:40:28Z) - "You Can't Fix What You Can't Measure": Privately Measuring Demographic
Performance Disparities in Federated Learning [78.70083858195906]
グループメンバーシップのプライバシを保護しつつ,グループ間でのパフォーマンスの差異を測定するための,差分プライベートなメカニズムを提案する。
我々の結果は、以前の研究の示唆に反して、プライバシ保護は必ずしもフェデレーションモデルの性能格差の特定と矛盾しているわけではないことを示している。
論文 参考訳(メタデータ) (2022-06-24T09:46:43Z) - SF-PATE: Scalable, Fair, and Private Aggregation of Teacher Ensembles [50.90773979394264]
本稿では、個人の機密情報のプライバシーを保護しつつ、差別的でない予測者の学習を可能にするモデルについて検討する。
提案モデルの主な特徴は、プライバシ保護とフェアモデルを作成するために、オフ・ザ・セルフと非プライベートフェアモデルの採用を可能にすることである。
論文 参考訳(メタデータ) (2022-04-11T14:42:54Z) - A Fairness Analysis on Private Aggregation of Teacher Ensembles [31.388212637482365]
PATE(Private Aggregation of Teacher Ensembles)は、機械学習の重要なフレームワークである。
本稿では、このプライバシー保護フレームワークが偏見と不公平を増すか否かを問う。
PATEは個人と個人のグループ間で精度の相違をもたらす可能性がある。
論文 参考訳(メタデータ) (2021-09-17T16:19:24Z) - Towards Unbiased Visual Emotion Recognition via Causal Intervention [63.74095927462]
本稿では,データセットバイアスによる負の効果を軽減するために,新しい感情認識ネットワーク(IERN)を提案する。
IERNの有効性を検証する一連の設計されたテストと、3つの感情ベンチマークの実験は、IERNが他の最先端のアプローチよりも優れていることを示した。
論文 参考訳(メタデータ) (2021-07-26T10:40:59Z) - Differentially Private Deep Learning under the Fairness Lens [34.28936739262812]
微分プライバシー(DP)は、プライベート機械学習システムにとって重要なプライバシー強化技術である。
計算に個々の参加に伴うリスクを計測し、バウンドすることができる。
近年,DP学習システムは,個人集団の偏見や不公平性を悪化させる可能性が指摘されている。
論文 参考訳(メタデータ) (2021-06-04T19:10:09Z) - Differentially Private and Fair Deep Learning: A Lagrangian Dual
Approach [54.32266555843765]
本稿では,個人の機密情報のプライバシを保護するとともに,非差別的予測器の学習を可能にするモデルについて検討する。
この方法は、微分プライバシーの概念と、公正性制約を満たすニューラルネットワークの設計にラグランジアン双対性(Lagrangian duality)を用いることに依存している。
論文 参考訳(メタデータ) (2020-09-26T10:50:33Z) - Neither Private Nor Fair: Impact of Data Imbalance on Utility and
Fairness in Differential Privacy [5.416049433853457]
本研究では,データの不均衡レベルの違いが,モデルによる決定の正確性と公平性に与える影響について検討する。
私たちは、小さな不均衡やプライバシー保証の緩やかささえも、異なる影響を引き起こすことを実証しています。
論文 参考訳(メタデータ) (2020-09-10T18:35:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。