論文の概要: Principle Bit Analysis: Autoencoding with Schur-Concave Loss
- arxiv url: http://arxiv.org/abs/2106.02796v1
- Date: Sat, 5 Jun 2021 04:45:30 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-14 08:12:00.712079
- Title: Principle Bit Analysis: Autoencoding with Schur-Concave Loss
- Title(参考訳): 原則ビット分析 - Schur-Concave Lossによる自動エンコーディング
- Authors: Sourbh Bhadane, Aaron B. Wagner, Jayadev Acharya
- Abstract要約: 線形オートコーダは,雑音によって変数が遅延したり劣化したりする。
第2の応用として、原型的原型固定レート圧縮機を考える。
- 参考スコア(独自算出の注目度): 45.420030784128166
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider a linear autoencoder in which the latent variables are quantized,
or corrupted by noise, and the constraint is Schur-concave in the set of latent
variances. Although finding the optimal encoder/decoder pair for this setup is
a nonconvex optimization problem, we show that decomposing the source into its
principal components is optimal. If the constraint is strictly Schur-concave
and the empirical covariance matrix has only simple eigenvalues, then any
optimal encoder/decoder must decompose the source in this way. As one
application, we consider a strictly Schur-concave constraint that estimates the
number of bits needed to represent the latent variables under fixed-rate
encoding, a setup that we call \emph{Principal Bit Analysis (PBA)}. This yields
a practical, general-purpose, fixed-rate compressor that outperforms existing
algorithms. As a second application, we show that a prototypical
autoencoder-based variable-rate compressor is guaranteed to decompose the
source into its principal components.
- Abstract(参考訳): 我々は、潜在変数が量子化され、ノイズによって劣化する線形自己エンコーダを考察し、潜在変数の集合における制約はシュル・コンケーブである。
この設定で最適なエンコーダ/デコーダペアを見つけることは非凸最適化問題であるが、ソースを主成分に分解することが最適であることを示す。
制約が厳密で経験的共分散行列が単純な固有値しか持たない場合、任意の最適なエンコーダ/デコーダはこの方法でソースを分解しなければならない。
1つのアプリケーションとして、固定レートエンコーディングの下で潜伏変数を表すのに必要なビット数を推定する厳密なSchur-concave制約を考え、これを \emph{Principal Bit Analysis (PBA) と呼ぶ。
これにより、既存のアルゴリズムを上回る実用的で汎用的な固定レート圧縮機が得られる。
第2の応用として,原型的なオートエンコーダベースの可変レート圧縮器では,ソースを主成分に分解することが保証されている。
関連論文リスト
- Rank Reduction Autoencoders -- Enhancing interpolation on nonlinear manifolds [3.180674374101366]
Rank Reduction Autoencoder (RRAE) は、拡張された潜在空間を持つオートエンコーダである。
2つの定式化(強式と弱式)が提示され、潜在空間を正確に表現する還元基底が構築される。
タスクに使用し、結果を他のオートエンコーダと比較することにより、この定式化の効率性を示す。
論文 参考訳(メタデータ) (2024-05-22T20:33:09Z) - Approaching Rate-Distortion Limits in Neural Compression with Lattice
Transform Coding [33.377272636443344]
ニューラル圧縮設計では、ソースを潜在ベクトルに変換し、それを整数に丸め、エントロピーを符号化する。
我々は、i.d.配列に対して非常に最適であり、実際に、元のソースシーケンスのスカラー量子化を常に回復することを示した。
遅延空間におけるスカラー量子化の代わりに格子量子化を用いることにより、格子変換符号化(LTC)が様々な次元で最適なベクトル量子化を回復できることを実証する。
論文 参考訳(メタデータ) (2024-03-12T05:09:25Z) - Compression of Structured Data with Autoencoders: Provable Benefit of
Nonlinearities and Depth [83.15263499262824]
勾配勾配勾配は入力のスパース構造を完全に無視する解に収束することを示す。
浅層構造にデノナイジング関数を付加することにより,スパースデータの圧縮におけるガウス性能の改善方法を示す。
CIFAR-10 や MNIST などの画像データセットに対して,本研究の成果を検証した。
論文 参考訳(メタデータ) (2024-02-07T16:32:29Z) - Bit-flipping Decoder Failure Rate Estimation for (v,w)-regular Codes [84.0257274213152]
並列ビットフリップデコーダのDFRを高精度に推定する手法を提案する。
本研究は,本症候群のモデル化およびシミュレーションによる重み比較,第1イテレーション終了時の誤りビット分布の誤検出,復号化復号化率(DFR)について検証した。
論文 参考訳(メタデータ) (2024-01-30T11:40:24Z) - String-based Molecule Generation via Multi-decoder VAE [56.465033997245776]
可変オートエンコーダ(VAE)による文字列型分子生成の問題点について検討する。
本稿では,そのタスクに対するVAEの性能を改善するための,シンプルで効果的なアイデアを提案する。
実験では,提案するVAEモデルを用いて,領域外分布からサンプルを生成する。
論文 参考訳(メタデータ) (2022-08-23T03:56:30Z) - Error-rate-agnostic decoding of topological stabilizer codes [0.0]
我々は、位相フリップとビットフリップの相対確率というバイアスに依存するデコーダを開発するが、誤差率には依存しない。
我々のデコーダは、与えられたシンドロームの同値類における最も可能性の高いエラー連鎖の数と有効重みを数えることに基づいている。
論文 参考訳(メタデータ) (2021-12-03T15:45:12Z) - End-to-end optimized image compression with competition of prior
distributions [29.585370305561582]
本稿では,単一の畳み込みオートエンコーダと学習前の複数分布を用いた圧縮方式を提案する。
提案手法は, 予め予測したパラメトリケート値に匹敵する速度歪み特性を示す。
論文 参考訳(メタデータ) (2021-11-17T15:04:01Z) - Neural Distributed Source Coding [59.630059301226474]
相関構造に依存せず,高次元までスケール可能な損失DSCのためのフレームワークを提案する。
提案手法は,複数のデータセット上で評価し,複雑な相関関係と最先端PSNRを扱えることを示す。
論文 参考訳(メタデータ) (2021-06-05T04:50:43Z) - Simple and Effective VAE Training with Calibrated Decoders [123.08908889310258]
変分オートエンコーダ(VAE)は、複雑な分布をモデル化するための効果的で簡単な方法である。
復号分布の不確かさを学習する校正復号器の影響について検討する。
本稿では,一般的なガウス復号器の簡易かつ斬新な修正を提案し,その予測分散を解析的に計算する。
論文 参考訳(メタデータ) (2020-06-23T17:57:47Z) - Variance Constrained Autoencoding [0.0]
エンコーダの場合、同時に分布制約を強制し、出力歪みを最小化しようとすると、生成的および再構成的品質が低下することを示す。
本稿では,分散制約のみを適用した分散制約付きオートエンコーダ(VCAE)を提案する。
実験の結果,VCAEは,MNISTとCelebAの再構成および生成品質において,ワッサースタインオートエンコーダと変分オートエンコーダを改良することがわかった。
論文 参考訳(メタデータ) (2020-05-08T00:50:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。