論文の概要: Approaching Rate-Distortion Limits in Neural Compression with Lattice
Transform Coding
- arxiv url: http://arxiv.org/abs/2403.07320v1
- Date: Tue, 12 Mar 2024 05:09:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-13 22:54:54.634223
- Title: Approaching Rate-Distortion Limits in Neural Compression with Lattice
Transform Coding
- Title(参考訳): 格子変換符号化を用いたニューラル圧縮における速度歪み限界へのアプローチ
- Authors: Eric Lei, Hamed Hassani, Shirin Saeedi Bidokhti
- Abstract要約: ニューラル圧縮設計では、ソースを潜在ベクトルに変換し、それを整数に丸め、エントロピーを符号化する。
我々は、i.d.配列に対して非常に最適であり、実際に、元のソースシーケンスのスカラー量子化を常に回復することを示した。
遅延空間におけるスカラー量子化の代わりに格子量子化を用いることにより、格子変換符号化(LTC)が様々な次元で最適なベクトル量子化を回復できることを実証する。
- 参考スコア(独自算出の注目度): 33.377272636443344
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural compression has brought tremendous progress in designing lossy
compressors with good rate-distortion (RD) performance at low complexity. Thus
far, neural compression design involves transforming the source to a latent
vector, which is then rounded to integers and entropy coded. While this
approach has been shown to be optimal in a one-shot sense on certain sources,
we show that it is highly sub-optimal on i.i.d. sequences, and in fact always
recovers scalar quantization of the original source sequence. We demonstrate
that the sub-optimality is due to the choice of quantization scheme in the
latent space, and not the transform design. By employing lattice quantization
instead of scalar quantization in the latent space, we demonstrate that Lattice
Transform Coding (LTC) is able to recover optimal vector quantization at
various dimensions and approach the asymptotically-achievable rate-distortion
function at reasonable complexity. On general vector sources, LTC improves upon
standard neural compressors in one-shot coding performance. LTC also enables
neural compressors that perform block coding on i.i.d. vector sources, which
yields coding gain over optimal one-shot coding.
- Abstract(参考訳): ニューラル圧縮は、低複雑さでRD性能が良い損失圧縮機を設計する際の大きな進歩をもたらした。
これまでのところ、ニューラルネットワークの圧縮設計はソースを潜在ベクトルに変換し、それを整数に丸めてエントロピー符号化する。
このアプローチは特定のソースに対して一発的感覚で最適であることが示されているが、i.d.配列に対して非常に準最適であることが示され、実際は元のソースシーケンスのスカラー量子化を常に回復する。
準最適性は、変換設計ではなく、潜在空間における量子化スキームの選択によるものであることを示す。
遅延空間におけるスカラー量子化の代わりに格子量子化を用いることにより、格子変換符号化(LTC)が様々な次元で最適ベクトル量子化を回復し、漸近的に達成可能な速度歪み関数に合理的にアプローチできることを実証する。
一般的なベクトル源では、ltcは標準のニューラルコンプレッサーをワンショット符号化性能で改善する。
LTCはまた、ブロック符号化を行うニューラル圧縮機をベクトル源で可能とし、最適なワンショット符号化よりも符号化の利得が得られる。
関連論文リスト
- Learning Optimal Lattice Vector Quantizers for End-to-end Neural Image Compression [16.892815659154053]
格子ベクトル量子化(LVQ)は、機能間の依存関係をより効果的に活用できる魅力的な代替手段である。
従来のLVQ構造は、均一なソース分布のために設計・最適化されている。
本稿では,この弱点を克服するための新しい学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-25T06:05:08Z) - Frequency Disentangled Features in Neural Image Compression [13.016298207860974]
ニューラル画像圧縮ネットワークは、エントロピーモデルが潜在コードの真の分布とどの程度うまく一致しているかによって制御される。
本稿では,緩和されたスカラー量子化が低ビットレートを実現するのに役立つ特徴レベルの周波数歪みを提案する。
提案するネットワークは,手作業によるコーデックだけでなく,空間的自己回帰エントロピーモデル上に構築されたニューラルネットワークベースのコーデックよりも優れている。
論文 参考訳(メタデータ) (2023-08-04T14:55:44Z) - Joint Hierarchical Priors and Adaptive Spatial Resolution for Efficient
Neural Image Compression [11.25130799452367]
ニューラル画像圧縮(NIC)のための絶対画像圧縮変換器(ICT)を提案する。
ICTは、潜在表現からグローバルコンテキストとローカルコンテキストの両方をキャプチャし、量子化された潜在表現の分布をパラメータ化する。
我々のフレームワークは、多目的ビデオ符号化(VVC)参照符号化(VTM-18.0)とニューラルスウィンT-ChARMに対する符号化効率とデコーダ複雑性のトレードオフを大幅に改善する。
論文 参考訳(メタデータ) (2023-07-05T13:17:14Z) - LVQAC: Lattice Vector Quantization Coupled with Spatially Adaptive
Companding for Efficient Learned Image Compression [24.812267280543693]
本稿では,空間適応型コンパウンディング(LVQAC)マッピングを併用した新しい格子ベクトル量子化方式を提案する。
エンドツーエンドのCNN画像圧縮モデルでは、一様量子化器をLVQACで置き換えることにより、モデルの複雑さを大幅に増大させることなく、より優れたレート歪み性能が得られる。
論文 参考訳(メタデータ) (2023-03-25T23:34:15Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Unified Multivariate Gaussian Mixture for Efficient Neural Image
Compression [151.3826781154146]
先行変数と超優先度を持つ潜伏変数は、変動画像圧縮において重要な問題である。
ベクトル化された視点で潜伏変数を観察する際、相関関係や相関関係は存在する。
当社のモデルでは、速度歪曲性能が向上し、圧縮速度が3.18倍に向上した。
論文 参考訳(メタデータ) (2022-03-21T11:44:17Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
本稿では,エンコーダとデコーダの両端に内在するニューラル表現を強化することで,符号化性能の向上を図るシステムを提案する。
実験により,提案手法はJPEGに対する速度歪み性能を,様々な品質指標で改善することを示した。
論文 参考訳(メタデータ) (2022-01-27T20:20:03Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Inlicit Neural Representations (INRs) は、様々なデータ型の新規かつ効果的な表現として注目されている。
量子化、量子化を考慮した再学習、エントロピー符号化を含むINRに基づく最初の包括的圧縮パイプラインを提案する。
我々は、INRによるソース圧縮に対する我々のアプローチが、同様の以前の作業よりも大幅に優れていることに気付きました。
論文 参考訳(メタデータ) (2021-12-08T13:02:53Z) - Learned transform compression with optimized entropy encoding [72.20409648915398]
学習した変換圧縮の問題を検討し、離散符号上の変換と確率分布の両方を学習する。
勾配のバックプロパゲーションを可能にするために量子化演算をソフト緩和し, 潜在符号のベクトル量子化を(スカラーではなく)採用した。
論文 参考訳(メタデータ) (2021-04-07T17:58:01Z) - Unfolding Neural Networks for Compressive Multichannel Blind
Deconvolution [71.29848468762789]
圧縮性多チャネルブラインドデコンボリューション問題に対する学習構造付き展開型ニューラルネットワークを提案する。
この問題では、各チャネルの測定は共通のソース信号とスパースフィルタの畳み込みとして与えられる。
提案手法は,従来の圧縮型マルチチャネルブラインドデコンボリューション法よりも,スパースフィルタの精度と高速化の点で優れていることを示す。
論文 参考訳(メタデータ) (2020-10-22T02:34:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。