Neural Distributed Source Coding
- URL: http://arxiv.org/abs/2106.02797v4
- Date: Mon, 1 Jul 2024 17:56:00 GMT
- Title: Neural Distributed Source Coding
- Authors: Jay Whang, Alliot Nagle, Anish Acharya, Hyeji Kim, Alexandros G. Dimakis,
- Abstract summary: We present a framework for lossy DSC that is agnostic to the correlation structure and can scale to high dimensions.
We evaluate our method on multiple datasets and show that our method can handle complex correlations and state-of-the-art PSNR.
- Score: 59.630059301226474
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distributed source coding (DSC) is the task of encoding an input in the absence of correlated side information that is only available to the decoder. Remarkably, Slepian and Wolf showed in 1973 that an encoder without access to the side information can asymptotically achieve the same compression rate as when the side information is available to it. While there is vast prior work on this topic, practical DSC has been limited to synthetic datasets and specific correlation structures. Here we present a framework for lossy DSC that is agnostic to the correlation structure and can scale to high dimensions. Rather than relying on hand-crafted source modeling, our method utilizes a conditional Vector-Quantized Variational Autoencoder (VQ-VAE) to learn the distributed encoder and decoder. We evaluate our method on multiple datasets and show that our method can handle complex correlations and achieves state-of-the-art PSNR. Our code is made available at https://github.com/acnagle/neural-dsc.
Related papers
- Compression of Structured Data with Autoencoders: Provable Benefit of
Nonlinearities and Depth [83.15263499262824]
We prove that gradient descent converges to a solution that completely disregards the sparse structure of the input.
We show how to improve upon Gaussian performance for the compression of sparse data by adding a denoising function to a shallow architecture.
We validate our findings on image datasets, such as CIFAR-10 and MNIST.
arXiv Detail & Related papers (2024-02-07T16:32:29Z) - Symmetric Equilibrium Learning of VAEs [56.56929742714685]
We view variational autoencoders (VAEs) as decoder-encoder pairs, which map distributions in the data space to distributions in the latent space and vice versa.
We propose a Nash equilibrium learning approach, which is symmetric with respect to the encoder and decoder and allows learning VAEs in situations where both the data and the latent distributions are accessible only by sampling.
arXiv Detail & Related papers (2023-07-19T10:27:34Z) - Collaborative Auto-encoding for Blind Image Quality Assessment [17.081262827258943]
Blind image quality assessment (BIQA) is a challenging problem with important real-world applications.
Recent efforts attempting to exploit powerful representations by deep neural networks (DNN) are hindered by the lack of subjectively annotated data.
This paper presents a novel BIQA method which overcomes this fundamental obstacle.
arXiv Detail & Related papers (2023-05-24T03:45:03Z) - Lossy Image Compression with Conditional Diffusion Models [25.158390422252097]
This paper outlines an end-to-end optimized lossy image compression framework using diffusion generative models.
In contrast to VAE-based neural compression, where the (mean) decoder is a deterministic neural network, our decoder is a conditional diffusion model.
Our approach yields stronger reported FID scores than the GAN-based model, while also yielding competitive performance with VAE-based models in several distortion metrics.
arXiv Detail & Related papers (2022-09-14T21:53:27Z) - COIN++: Data Agnostic Neural Compression [55.27113889737545]
COIN++ is a neural compression framework that seamlessly handles a wide range of data modalities.
We demonstrate the effectiveness of our method by compressing various data modalities.
arXiv Detail & Related papers (2022-01-30T20:12:04Z) - Autoencoding Variational Autoencoder [56.05008520271406]
We study the implications of this behaviour on the learned representations and also the consequences of fixing it by introducing a notion of self consistency.
We show that encoders trained with our self-consistency approach lead to representations that are robust (insensitive) to perturbations in the input introduced by adversarial attacks.
arXiv Detail & Related papers (2020-12-07T14:16:14Z) - Learning Disentangled Latent Factors from Paired Data in Cross-Modal
Retrieval: An Implicit Identifiable VAE Approach [33.61751393224223]
We deal with the problem of learning the underlying disentangled latent factors that are shared between the paired bi-modal data in cross-modal retrieval.
We propose a novel idea of the implicit decoder, which completely removes the ambient data decoding module from a latent variable model.
Our model is shown to identify the factors accurately, significantly outperforming conventional encoder-decoder latent variable models.
arXiv Detail & Related papers (2020-12-01T17:47:50Z) - Modeling Lost Information in Lossy Image Compression [72.69327382643549]
Lossy image compression is one of the most commonly used operators for digital images.
We propose a novel invertible framework called Invertible Lossy Compression (ILC) to largely mitigate the information loss problem.
arXiv Detail & Related papers (2020-06-22T04:04:56Z) - Infomax Neural Joint Source-Channel Coding via Adversarial Bit Flip [41.28049430114734]
We propose a novel regularization method called Infomax Adversarial-Bit-Flip (IABF) to improve the stability and robustness of the neural joint source-channel coding scheme.
Our IABF can achieve state-of-the-art performances on both compression and error correction benchmarks and outperform the baselines by a significant margin.
arXiv Detail & Related papers (2020-04-03T10:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.