Precision tomography of a three-qubit donor quantum processor in silicon
- URL: http://arxiv.org/abs/2106.03082v3
- Date: Fri, 28 Jan 2022 01:12:57 GMT
- Title: Precision tomography of a three-qubit donor quantum processor in silicon
- Authors: Mateusz T. M\k{a}dzik, Serwan Asaad, Akram Youssry, Benjamin Joecker,
Kenneth M. Rudinger, Erik Nielsen, Kevin C. Young, Timothy J. Proctor, Andrew
D. Baczewski, Arne Laucht, Vivien Schmitt, Fay E. Hudson, Kohei M. Itoh,
Alexander M. Jakob, Brett C. Johnson, David N. Jamieson, Andrew S. Dzurak,
Christopher Ferrie, Robin Blume-Kohout and Andrea Morello
- Abstract summary: Nuclear spins were among the first physical platforms to be considered for quantum information processing.
We demonstrate universal quantum logic operations using a pair of ion-implanted 31P donor nuclei in a silicon nanoelectronic device.
- Score: 38.42250061908039
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nuclear spins were among the first physical platforms to be considered for
quantum information processing, because of their exceptional quantum coherence
and atomic-scale footprint. However, their full potential for quantum computing
has not yet been realized, due to the lack of methods to link nuclear qubits
within a scalable device combined with multi-qubit operations with sufficient
fidelity to sustain fault-tolerant quantum computation. Here we demonstrate
universal quantum logic operations using a pair of ion-implanted 31P donor
nuclei in a silicon nanoelectronic device. A nuclear two-qubit controlled-Z
gate is obtained by imparting a geometric phase to a shared electron spin, and
used to prepare entangled Bell states with fidelities up to 94.2(2.7)%. The
quantum operations are precisely characterised using gate set tomography (GST),
yielding one-qubit average gate fidelities up to 99.95(2)%, two-qubit average
gate fidelity of 99.37(11)% and two-qubit preparation/measurement fidelities of
98.95(4)%. These three metrics indicate that nuclear spins in silicon are
approaching the performance demanded in fault-tolerant quantum processors. We
then demonstrate entanglement between the two nuclei and the shared electron by
producing a Greenberger-Horne-Zeilinger three-qubit state with 92.5(1.0)%
fidelity. Since electron spin qubits in semiconductors can be further coupled
to other electrons or physically shuttled across different locations, these
results establish a viable route for scalable quantum information processing
using donor nuclear and electron spins.
Related papers
- Implementation of a scalable universal two-qubit quantum processor with electron and nuclear spins in a trapped ion [3.2872851729958867]
We propose a scalable n-ion-2n-qubit quantum processor utilizing four internal levels of each ion.
We experimentally implement a 1-ion-2-qubit universal processor using the electron spin and nuclear spin of a single 171Yb+ ion.
Our work paves the way towards achieving 2n-times increase in the size of quantum computational Hilbert space with n ions.
arXiv Detail & Related papers (2024-07-01T11:40:45Z) - Tomography of entangling two-qubit logic operations in exchange-coupled
donor electron spin qubits [26.72272277499726]
Quantum processors require high-fidelity universal quantum logic operations.
No entanglement between donor-bound electron spins has been demonstrated to date.
These results form the necessary basis for scaling up donor-based quantum computers.
arXiv Detail & Related papers (2023-09-27T07:58:37Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Modelling semiconductor spin qubits and their charge noise environment
for quantum gate fidelity estimation [0.9406493726662083]
The spin of an electron confined in semiconductor quantum dots is a promising candidate for quantum bit (qubit) implementations.
We present here a co-modelling framework for double quantum dot (DQD) devices and their charge noise environment.
We find an inverse correlation between quantum gate errors and quantum dot confinement.
arXiv Detail & Related papers (2022-10-10T10:12:54Z) - An electrically-driven single-atom `flip-flop' qubit [43.55994393060723]
Quantum information is encoded in the electron-nuclear states of a phosphorus donor.
Results pave the way to the construction of solid-state quantum processors.
arXiv Detail & Related papers (2022-02-09T13:05:12Z) - Quantum thermodynamic methods to purify a qubit on a quantum processing
unit [68.8204255655161]
We report on a quantum thermodynamic method to purify a qubit on a quantum processing unit equipped with identical qubits.
Our starting point is a three qubit design that emulates the well known two qubit swap engine.
We implement it on a publicly available superconducting qubit based QPU, and observe a purification capability down to 200 mK.
arXiv Detail & Related papers (2022-01-31T16:13:57Z) - Two-qubit silicon quantum processor with operation fidelity exceeding
99% [0.0]
Two qubit Si/SiGe quantum processor demonstrated state preparation and readout with fidelity over 97%.
Results highlight the potential of silicon spin qubits to become a dominant technology in the development of intermediate-scale quantum processors.
arXiv Detail & Related papers (2021-11-23T15:15:59Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Conditional quantum operation of two exchange-coupled single-donor spin
qubits in a MOS-compatible silicon device [48.7576911714538]
Silicon nanoelectronic devices can host single-qubit quantum logic operations with fidelity better than 99.9%.
For the spins of an electron bound to a single donor atom, introduced in the silicon by ion implantation, the quantum information can be stored for nearly 1 second.
Here we demonstrate the conditional, coherent control of an electron spin qubit in an exchange-coupled pair of $31$P donors implanted in silicon.
arXiv Detail & Related papers (2020-06-08T11:25:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.