ModelCI-e: Enabling Continual Learning in Deep Learning Serving Systems
- URL: http://arxiv.org/abs/2106.03122v1
- Date: Sun, 6 Jun 2021 13:28:51 GMT
- Title: ModelCI-e: Enabling Continual Learning in Deep Learning Serving Systems
- Authors: Yizheng Huang, Huaizheng Zhang, Yonggang Wen, Peng Sun, Nguyen Binh
Duong TA
- Abstract summary: This paper implements a lightweight MLOps plugin, termed ModelCI-e (continuous integration and evolution), to address the issue.
ModelCI-e embraces continual learning (CL) and ML deployment techniques, providing end-to-end supports for model updating and validation.
Preliminary results demonstrate the usability of ModelCI-e, and indicate that eliminating the interference between model updating and inference workloads is crucial for higher system efficiency.
- Score: 21.37434583546624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: MLOps is about taking experimental ML models to production, i.e., serving the
models to actual users. Unfortunately, existing ML serving systems do not
adequately handle the dynamic environments in which online data diverges from
offline training data, resulting in tedious model updating and deployment
works. This paper implements a lightweight MLOps plugin, termed ModelCI-e
(continuous integration and evolution), to address the issue. Specifically, it
embraces continual learning (CL) and ML deployment techniques, providing
end-to-end supports for model updating and validation without serving engine
customization. ModelCI-e includes 1) a model factory that allows CL researchers
to prototype and benchmark CL models with ease, 2) a CL backend to automate and
orchestrate the model updating efficiently, and 3) a web interface for an ML
team to manage CL service collaboratively. Our preliminary results demonstrate
the usability of ModelCI-e, and indicate that eliminating the interference
between model updating and inference workloads is crucial for higher system
efficiency.
Related papers
- CLIPErase: Efficient Unlearning of Visual-Textual Associations in CLIP [56.199779065855004]
We introduce CLIPErase, a novel approach that disentangles and selectively forgets both visual and textual associations.
Experiments on the CIFAR-100 and Flickr30K datasets demonstrate that CLIPErase effectively forgets designated associations in zero-shot tasks for multimodal samples.
arXiv Detail & Related papers (2024-10-30T17:51:31Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
We show that Elect, Mask & Rescale-Merging (EMR-Merging) shows outstanding performance compared to existing merging methods.
EMR-Merging is tuning-free, thus requiring no data availability or any additional training while showing impressive performance.
arXiv Detail & Related papers (2024-05-23T05:25:45Z) - Boosting Continual Learning of Vision-Language Models via Mixture-of-Experts Adapters [65.15700861265432]
We present a parameter-efficient continual learning framework to alleviate long-term forgetting in incremental learning with vision-language models.
Our approach involves the dynamic expansion of a pre-trained CLIP model, through the integration of Mixture-of-Experts (MoE) adapters.
To preserve the zero-shot recognition capability of vision-language models, we introduce a Distribution Discriminative Auto-Selector.
arXiv Detail & Related papers (2024-03-18T08:00:23Z) - LLM Augmented LLMs: Expanding Capabilities through Composition [56.40953749310957]
CALM -- Composition to Augment Language Models -- introduces cross-attention between models to compose their representations and enable new capabilities.
We illustrate that augmenting PaLM2-S with a smaller model trained on low-resource languages results in an absolute improvement of up to 13% on tasks like translation into English.
When PaLM2-S is augmented with a code-specific model, we see a relative improvement of 40% over the base model for code generation and explanation tasks.
arXiv Detail & Related papers (2024-01-04T18:53:01Z) - Adapting Large Language Models for Content Moderation: Pitfalls in Data
Engineering and Supervised Fine-tuning [79.53130089003986]
Large Language Models (LLMs) have become a feasible solution for handling tasks in various domains.
In this paper, we introduce how to fine-tune a LLM model that can be privately deployed for content moderation.
arXiv Detail & Related papers (2023-10-05T09:09:44Z) - Model Share AI: An Integrated Toolkit for Collaborative Machine Learning
Model Development, Provenance Tracking, and Deployment in Python [0.0]
We introduce Model Share AI (AIMS), an easy-to-use MLOps platform designed to streamline collaborative model development, model provenance tracking, and model deployment.
AIMS features collaborative project spaces and a standardized model evaluation process that ranks model submissions based on their performance on unseen evaluation data.
AIMS allows users to deploy ML models built in Scikit-Learn, Keras, PyTorch, and ONNX into live REST APIs and automatically generated web apps.
arXiv Detail & Related papers (2023-09-27T15:24:39Z) - TaCA: Upgrading Your Visual Foundation Model with Task-agnostic
Compatible Adapter [21.41170708560114]
A growing number of applications based on visual foundation models are emerging.
In situations involving system upgrades, it becomes essential to re-train all downstream modules to adapt to the new foundation model.
We introduce a parameter-efficient and task-agnostic adapter, dubbed TaCA, that facilitates compatibility across distinct foundation models.
arXiv Detail & Related papers (2023-06-22T03:00:24Z) - Continual-Learning-as-a-Service (CLaaS): On-Demand Efficient Adaptation
of Predictive Models [17.83007940710455]
Two main future trends for companies that want to build machine learning-based applications are real-time inference and continual updating.
This paper defines a novel software service and model delivery infrastructure termed Continual Learning-as-a-Service (CL) to address these issues.
It provides support for model updating and validation tools for data scientists without an on-premise solution and in an efficient, stateful and easy-to-use manner.
arXiv Detail & Related papers (2022-06-14T16:22:54Z) - Momentum Pseudo-Labeling for Semi-Supervised Speech Recognition [55.362258027878966]
We present momentum pseudo-labeling (MPL) as a simple yet effective strategy for semi-supervised speech recognition.
MPL consists of a pair of online and offline models that interact and learn from each other, inspired by the mean teacher method.
The experimental results demonstrate that MPL effectively improves over the base model and is scalable to different semi-supervised scenarios.
arXiv Detail & Related papers (2021-06-16T16:24:55Z) - MLModelCI: An Automatic Cloud Platform for Efficient MLaaS [15.029094196394862]
We release the platform as an open-source project on GitHub under Apache 2.0 license.
Our system bridges the gap between current ML training and serving systems and thus free developers from manual and tedious work often associated with service deployment.
arXiv Detail & Related papers (2020-06-09T07:48:20Z) - Self-Updating Models with Error Remediation [0.5156484100374059]
We propose a framework, Self-Updating Models with Error Remediation (SUMER), in which a deployed model updates itself as new data becomes available.
A key component of SUMER is the notion of error remediation as self-labeled data can be susceptible to the propagation of errors.
We find that self-updating models (SUMs) generally perform better than models that do not attempt to self-update when presented with additional previously-unseen data.
arXiv Detail & Related papers (2020-05-19T23:09:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.