Dynamic Allocation Hypernetwork with Adaptive Model Recalibration for FCL
- URL: http://arxiv.org/abs/2503.18064v1
- Date: Sun, 23 Mar 2025 13:12:56 GMT
- Title: Dynamic Allocation Hypernetwork with Adaptive Model Recalibration for FCL
- Authors: Xiaoming Qi, Jingyang Zhang, Huazhu Fu, Guanyu Yang, Shuo Li, Yueming Jin,
- Abstract summary: We propose a novel server-side FCL pattern in medical domain, Dynamic Allocation Hypernetwork with adaptive model recalibration (textbfFedDAH)<n>For the biased optimization, we introduce a novel adaptive model recalibration (AMR) to incorporate the candidate changes of historical models into current server updates.<n>Experiments on the AMOS dataset demonstrate the superiority of our FedDAH to other FCL methods on sites with different task streams.
- Score: 49.508844889242425
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Federated continual learning (FCL) offers an emerging pattern to facilitate the applicability of federated learning (FL) in real-world scenarios, where tasks evolve dynamically and asynchronously across clients, especially in medical scenario. Existing server-side FCL methods in nature domain construct a continually learnable server model by client aggregation on all-involved tasks. However, they are challenged by: (1) Catastrophic forgetting for previously learned tasks, leading to error accumulation in server model, making it difficult to sustain comprehensive knowledge across all tasks. (2) Biased optimization due to asynchronous tasks handled across different clients, leading to the collision of optimization targets of different clients at the same time steps. In this work, we take the first step to propose a novel server-side FCL pattern in medical domain, Dynamic Allocation Hypernetwork with adaptive model recalibration (\textbf{FedDAH}). It is to facilitate collaborative learning under the distinct and dynamic task streams across clients. To alleviate the catastrophic forgetting, we propose a dynamic allocation hypernetwork (DAHyper) where a continually updated hypernetwork is designed to manage the mapping between task identities and their associated model parameters, enabling the dynamic allocation of the model across clients. For the biased optimization, we introduce a novel adaptive model recalibration (AMR) to incorporate the candidate changes of historical models into current server updates, and assign weights to identical tasks across different time steps based on the similarity for continual optimization. Extensive experiments on the AMOS dataset demonstrate the superiority of our FedDAH to other FCL methods on sites with different task streams. The code is available:https://github.com/jinlab-imvr/FedDAH.
Related papers
- Dynamic Allocation Hypernetwork with Adaptive Model Recalibration for Federated Continual Learning [49.508844889242425]
We propose a novel server-side FCL pattern in medical domain, Dynamic Allocation Hypernetwork with adaptive model recalibration (FedDAH)
FedDAH is designed to facilitate collaborative learning under the distinct and dynamic task streams across clients.
For the biased optimization, we introduce a novel adaptive model recalibration (AMR) to incorporate the candidate changes of historical models into current server updates.
arXiv Detail & Related papers (2025-03-25T00:17:47Z) - Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging [75.93960998357812]
Deep model merging represents an emerging research direction that combines multiple fine-tuned models to harness their capabilities across different tasks and domains.<n>Current model merging techniques focus on merging all available models simultaneously, with weight matrices-based methods being the predominant approaches.<n>We propose a training-free projection-based continual merging method that processes models sequentially.
arXiv Detail & Related papers (2025-01-16T13:17:24Z) - FedECADO: A Dynamical System Model of Federated Learning [15.425099636035108]
Federated learning harnesses the power of distributed optimization to train a unified machine learning model across separate clients.
This work proposes FedECADO, a new algorithm inspired by a dynamical system representation of the federated learning process.
Compared to prominent techniques, including FedProx and FedNova, FedECADO achieves higher classification accuracies in numerous heterogeneous scenarios.
arXiv Detail & Related papers (2024-10-13T17:26:43Z) - Collaborative and Efficient Personalization with Mixtures of Adaptors [5.195669033269619]
Federated Low-Rank Adaptive Learning (FLoRAL) allows clients to personalize in groups by mixing between low-rank adaptors.<n>FLoRAL is a model parameterization that casts personalized federated learning as a multi-task learning problem.
arXiv Detail & Related papers (2024-10-04T15:11:15Z) - Achieving Byzantine-Resilient Federated Learning via Layer-Adaptive Sparsified Model Aggregation [7.200910949076064]
Federated Learning (FL) enables multiple clients to collaboratively train a model without sharing their local data.
Yet the FL system is vulnerable to well-designed Byzantine attacks, which aim to disrupt the model training process by uploading malicious model updates.
We propose the Layer-Adaptive Sparsified Model Aggregation (LASA) approach, which combines pre-aggregation sparsification with layer-wise adaptive aggregation to improve robustness.
arXiv Detail & Related papers (2024-09-02T19:28:35Z) - Mamba-FSCIL: Dynamic Adaptation with Selective State Space Model for Few-Shot Class-Incremental Learning [113.89327264634984]
Few-shot class-incremental learning (FSCIL) confronts the challenge of integrating new classes into a model with minimal training samples.
Traditional methods widely adopt static adaptation relying on a fixed parameter space to learn from data that arrive sequentially.
We propose a dual selective SSM projector that dynamically adjusts the projection parameters based on the intermediate features for dynamic adaptation.
arXiv Detail & Related papers (2024-07-08T17:09:39Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - FedHCA$^2$: Towards Hetero-Client Federated Multi-Task Learning [18.601886059536326]
Federated Learning (FL) enables joint training across distributed clients using their local data privately.
We introduce a novel problem setting, Hetero-Client Federated Multi-Task Learning (HC-FMTL), to accommodate diverse task setups.
We propose the FedHCA$2$ framework, which allows for federated training of personalized models by modeling relationships among heterogeneous clients.
arXiv Detail & Related papers (2023-11-22T09:12:50Z) - Asynchronous Multi-Model Dynamic Federated Learning over Wireless
Networks: Theory, Modeling, and Optimization [20.741776617129208]
Federated learning (FL) has emerged as a key technique for distributed machine learning (ML)
We first formulate rectangular scheduling steps and functions to capture the impact of system parameters on learning performance.
Our analysis sheds light on the joint impact of device training variables and asynchronous scheduling decisions.
arXiv Detail & Related papers (2023-05-22T21:39:38Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
This work develops a methodology that enables data-driven methods to continuously learn and optimize in a dynamic environment.
We propose to build the notion of continual learning into the modeling process of learning wireless systems.
Our design is based on a novel min-max formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2020-11-16T08:24:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.