Model Share AI: An Integrated Toolkit for Collaborative Machine Learning
Model Development, Provenance Tracking, and Deployment in Python
- URL: http://arxiv.org/abs/2309.15719v1
- Date: Wed, 27 Sep 2023 15:24:39 GMT
- Title: Model Share AI: An Integrated Toolkit for Collaborative Machine Learning
Model Development, Provenance Tracking, and Deployment in Python
- Authors: Heinrich Peters and Michael Parrott
- Abstract summary: We introduce Model Share AI (AIMS), an easy-to-use MLOps platform designed to streamline collaborative model development, model provenance tracking, and model deployment.
AIMS features collaborative project spaces and a standardized model evaluation process that ranks model submissions based on their performance on unseen evaluation data.
AIMS allows users to deploy ML models built in Scikit-Learn, Keras, PyTorch, and ONNX into live REST APIs and automatically generated web apps.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning (ML) has the potential to revolutionize a wide range of
research areas and industries, but many ML projects never progress past the
proof-of-concept stage. To address this issue, we introduce Model Share AI
(AIMS), an easy-to-use MLOps platform designed to streamline collaborative
model development, model provenance tracking, and model deployment, as well as
a host of other functions aiming to maximize the real-world impact of ML
research. AIMS features collaborative project spaces and a standardized model
evaluation process that ranks model submissions based on their performance on
unseen evaluation data, enabling collaborative model development and
crowd-sourcing. Model performance and various model metadata are automatically
captured to facilitate provenance tracking and allow users to learn from and
build on previous submissions. Additionally, AIMS allows users to deploy ML
models built in Scikit-Learn, TensorFlow Keras, PyTorch, and ONNX into live
REST APIs and automatically generated web apps with minimal code. The ability
to deploy models with minimal effort and to make them accessible to
non-technical end-users through web apps has the potential to make ML research
more applicable to real-world challenges.
Related papers
- Mini-InternVL: A Flexible-Transfer Pocket Multimodal Model with 5% Parameters and 90% Performance [78.48606021719206]
Mini-InternVL is a series of MLLMs with parameters ranging from 1B to 4B, which achieves 90% of the performance with only 5% of the parameters.
We develop a unified adaptation framework for Mini-InternVL, which enables our models to transfer and outperform specialized models in downstream tasks.
arXiv Detail & Related papers (2024-10-21T17:58:20Z) - VisualAgentBench: Towards Large Multimodal Models as Visual Foundation Agents [50.12414817737912]
Large Multimodal Models (LMMs) have ushered in a new era in artificial intelligence, merging capabilities in both language and vision to form highly capable Visual Foundation Agents.
Existing benchmarks fail to sufficiently challenge or showcase the full potential of LMMs in complex, real-world environments.
VisualAgentBench (VAB) is a pioneering benchmark specifically designed to train and evaluate LMMs as visual foundation agents.
arXiv Detail & Related papers (2024-08-12T17:44:17Z) - Data-Juicer Sandbox: A Comprehensive Suite for Multimodal Data-Model Co-development [67.55944651679864]
We present a novel sandbox suite tailored for integrated data-model co-development.
This sandbox provides a comprehensive experimental platform, enabling rapid iteration and insight-driven refinement of both data and models.
We also uncover fruitful insights gleaned from exhaustive benchmarks, shedding light on the critical interplay between data quality, diversity, and model behavior.
arXiv Detail & Related papers (2024-07-16T14:40:07Z) - Model Callers for Transforming Predictive and Generative AI Applications [2.7195102129095003]
We introduce a novel software abstraction termed "model caller"
Model callers act as an intermediary for AI and ML model calling.
We have released a prototype Python library for model callers, accessible for installation via pip or for download from GitHub.
arXiv Detail & Related papers (2024-04-17T12:21:06Z) - Reusable MLOps: Reusable Deployment, Reusable Infrastructure and
Hot-Swappable Machine Learning models and services [0.0]
We introduce a new sustainable concept in the field of AI/ML operations - called Reusable MLOps.
We reuse the existing deployment and infrastructure to serve new models by hot-swapping them without tearing down the infrastructure or the microservice.
arXiv Detail & Related papers (2024-02-19T23:40:46Z) - ModelGPT: Unleashing LLM's Capabilities for Tailored Model Generation [35.160964210941955]
We propose ModelGPT, a framework designed to determine and generate AI models tailored to the data or task descriptions provided by the user.
Given user requirements, ModelGPT is able to provide tailored models at most 270x faster than the previous paradigms.
arXiv Detail & Related papers (2024-02-18T11:24:34Z) - ModelScope-Agent: Building Your Customizable Agent System with
Open-source Large Language Models [74.64651681052628]
We introduce ModelScope-Agent, a customizable agent framework for real-world applications based on open-source LLMs as controllers.
It provides a user-friendly system library, with customizable engine design to support model training on multiple open-source LLMs.
A comprehensive framework has been proposed spanning over tool-use data collection, tool retrieval, tool registration, memory control, customized model training, and evaluation.
arXiv Detail & Related papers (2023-09-02T16:50:30Z) - MLOps: A Step Forward to Enterprise Machine Learning [0.0]
This research presents a detailed review of MLOps, its benefits, difficulties, evolutions, and important underlying technologies.
The MLOps workflow is explained in detail along with the various tools necessary for both model and data exploration and deployment.
This article also puts light on the end-to-end production of ML projects using various maturity levels of automated pipelines.
arXiv Detail & Related papers (2023-05-27T20:44:14Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
We show that mixture-of-experts (MoE) techniques can achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost.
Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling vision-language models.
arXiv Detail & Related papers (2023-03-13T16:00:31Z) - OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
We introduce OmniForce, a human-centered AutoML system that yields both human-assisted ML and ML-assisted human techniques.
We show how OmniForce can put an AutoML system into practice and build adaptive AI in open-environment scenarios.
arXiv Detail & Related papers (2023-03-01T13:35:22Z) - A Model-Driven Engineering Approach to Machine Learning and Software
Modeling [0.5156484100374059]
Models are used in both the Software Engineering (SE) and the Artificial Intelligence (AI) communities.
The main focus is on the Internet of Things (IoT) and smart Cyber-Physical Systems (CPS) use cases, where both ML and model-driven SE play a key role.
arXiv Detail & Related papers (2021-07-06T15:50:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.