Graph2Graph Learning with Conditional Autoregressive Models
- URL: http://arxiv.org/abs/2106.03236v1
- Date: Sun, 6 Jun 2021 20:28:07 GMT
- Title: Graph2Graph Learning with Conditional Autoregressive Models
- Authors: Guan Wang, Francois Bernard Lauze, Aasa Feragen
- Abstract summary: We present a conditional auto-re model for graph-to-graph learning.
We illustrate its representational capabilities via experiments on challenging subgraph predictions from graph algorithmics.
- Score: 8.203106789678397
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a graph neural network model for solving graph-to-graph learning
problems. Most deep learning on graphs considers ``simple'' problems such as
graph classification or regressing real-valued graph properties. For such
tasks, the main requirement for intermediate representations of the data is to
maintain the structure needed for output, i.e., keeping classes separated or
maintaining the order indicated by the regressor. However, a number of learning
tasks, such as regressing graph-valued output, generative models, or graph
autoencoders, aim to predict a graph-structured output. In order to
successfully do this, the learned representations need to preserve far more
structure. We present a conditional auto-regressive model for graph-to-graph
learning and illustrate its representational capabilities via experiments on
challenging subgraph predictions from graph algorithmics; as a graph
autoencoder for reconstruction and visualization; and on pretraining
representations that allow graph classification with limited labeled data.
Related papers
- An Accurate Graph Generative Model with Tunable Features [0.8192907805418583]
We propose a method to improve the accuracy of GraphTune by adding a new mechanism to feed back errors of graph features.
Experiments on a real-world graph dataset showed that the features in the generated graphs are accurately tuned compared with conventional models.
arXiv Detail & Related papers (2023-09-03T12:34:15Z) - Let There Be Order: Rethinking Ordering in Autoregressive Graph
Generation [6.422073551199993]
Conditional graph generation tasks involve training a model to generate a graph given a set of input conditions.
Many previous studies employ autoregressive models to incrementally generate graph components such as nodes and edges.
As graphs typically lack a natural ordering among their components, converting a graph into a sequence of tokens is not straightforward.
arXiv Detail & Related papers (2023-05-24T20:52:34Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
Contrastive learning has emerged as a premier method for learning representations with or without supervision.
Recent studies have shown its utility in graph representation learning for pre-training.
We propose a set of well-motivated graph transformation operations to provide a bank of candidates when constructing augmentations for a graph contrastive objective.
arXiv Detail & Related papers (2023-02-06T16:26:29Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Explanation Graph Generation via Pre-trained Language Models: An
Empirical Study with Contrastive Learning [84.35102534158621]
We study pre-trained language models that generate explanation graphs in an end-to-end manner.
We propose simple yet effective ways of graph perturbations via node and edge edit operations.
Our methods lead to significant improvements in both structural and semantic accuracy of explanation graphs.
arXiv Detail & Related papers (2022-04-11T00:58:27Z) - Synthetic Graph Generation to Benchmark Graph Learning [7.914804101579097]
Graph learning algorithms have attained state-of-the-art performance on many graph analysis tasks.
One reason is due to the very small number of datasets used in practice to benchmark the performance of graph learning algorithms.
We propose to generate synthetic graphs, and study the behaviour of graph learning algorithms in a controlled scenario.
arXiv Detail & Related papers (2022-04-04T10:48:32Z) - Learning Graphon Autoencoders for Generative Graph Modeling [91.32624399902755]
Graphon is a nonparametric model that generates graphs with arbitrary sizes and can be induced from graphs easily.
We propose a novel framework called textitgraphon autoencoder to build an interpretable and scalable graph generative model.
A linear graphon factorization model works as a decoder, leveraging the latent representations to reconstruct the induced graphons.
arXiv Detail & Related papers (2021-05-29T08:11:40Z) - Structural Information Preserving for Graph-to-Text Generation [59.00642847499138]
The task of graph-to-text generation aims at producing sentences that preserve the meaning of input graphs.
We propose to tackle this problem by leveraging richer training signals that can guide our model for preserving input information.
Experiments on two benchmarks for graph-to-text generation show the effectiveness of our approach over a state-of-the-art baseline.
arXiv Detail & Related papers (2021-02-12T20:09:01Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z) - Non-Parametric Graph Learning for Bayesian Graph Neural Networks [35.88239188555398]
We propose a novel non-parametric graph model for constructing the posterior distribution of graph adjacency matrices.
We demonstrate the advantages of this model in three different problem settings: node classification, link prediction and recommendation.
arXiv Detail & Related papers (2020-06-23T21:10:55Z) - Machine Learning on Graphs: A Model and Comprehensive Taxonomy [22.73365477040205]
We bridge the gap between graph neural networks, network embedding and graph regularization models.
Specifically, we propose a Graph Decoder Model (GRAPHEDM), which generalizes popular algorithms for semi-supervised learning on graphs.
arXiv Detail & Related papers (2020-05-07T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.