Multimodal Fusion Transformer for Remote Sensing Image Classification
- URL: http://arxiv.org/abs/2203.16952v2
- Date: Tue, 20 Jun 2023 17:58:25 GMT
- Title: Multimodal Fusion Transformer for Remote Sensing Image Classification
- Authors: Swalpa Kumar Roy, Ankur Deria, Danfeng Hong, Behnood Rasti, Antonio
Plaza, Jocelyn Chanussot
- Abstract summary: Vision transformers (ViTs) have been trending in image classification tasks due to their promising performance when compared to convolutional neural networks (CNNs)
To achieve satisfactory performance, close to that of CNNs, transformers need fewer parameters.
We introduce a new multimodal fusion transformer (MFT) network which comprises a multihead cross patch attention (mCrossPA) for HSI land-cover classification.
- Score: 35.57881383390397
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision transformers (ViTs) have been trending in image classification tasks
due to their promising performance when compared to convolutional neural
networks (CNNs). As a result, many researchers have tried to incorporate ViTs
in hyperspectral image (HSI) classification tasks. To achieve satisfactory
performance, close to that of CNNs, transformers need fewer parameters. ViTs
and other similar transformers use an external classification (CLS) token which
is randomly initialized and often fails to generalize well, whereas other
sources of multimodal datasets, such as light detection and ranging (LiDAR)
offer the potential to improve these models by means of a CLS. In this paper,
we introduce a new multimodal fusion transformer (MFT) network which comprises
a multihead cross patch attention (mCrossPA) for HSI land-cover classification.
Our mCrossPA utilizes other sources of complementary information in addition to
the HSI in the transformer encoder to achieve better generalization. The
concept of tokenization is used to generate CLS and HSI patch tokens, helping
to learn a {distinctive representation} in a reduced and hierarchical feature
space. Extensive experiments are carried out on {widely used benchmark}
datasets {i.e.,} the University of Houston, Trento, University of Southern
Mississippi Gulfpark (MUUFL), and Augsburg. We compare the results of the
proposed MFT model with other state-of-the-art transformers, classical CNNs,
and conventional classifiers models. The superior performance achieved by the
proposed model is due to the use of multihead cross patch attention. The source
code will be made available publicly at
\url{https://github.com/AnkurDeria/MFT}.}
Related papers
- MART: MultiscAle Relational Transformer Networks for Multi-agent Trajectory Prediction [5.8919870666241945]
We present a Multiscleimat Transformer (MART) network for multi-agent trajectory prediction.
MART is a hypergraph transformer architecture to consider individual and group behaviors in transformer machinery.
In addition, we propose an Adaptive Group Estor (AGE) designed to infer complex group relations in real-world environments.
arXiv Detail & Related papers (2024-07-31T14:31:49Z) - DuoFormer: Leveraging Hierarchical Visual Representations by Local and Global Attention [1.5624421399300303]
We propose a novel hierarchical transformer model that adeptly integrates the feature extraction capabilities of Convolutional Neural Networks (CNNs) with the advanced representational potential of Vision Transformers (ViTs)
Addressing the lack of inductive biases and dependence on extensive training datasets in ViTs, our model employs a CNN backbone to generate hierarchical visual representations.
These representations are then adapted for transformer input through an innovative patch tokenization.
arXiv Detail & Related papers (2024-07-18T22:15:35Z) - CTRL-F: Pairing Convolution with Transformer for Image Classification via Multi-Level Feature Cross-Attention and Representation Learning Fusion [0.0]
We present a novel lightweight hybrid network that pairs Convolution with Transformers.
We fuse the local responses acquired from the convolution path with the global responses acquired from the MFCA module.
Experiments demonstrate that our variants achieve state-of-the-art performance, whether trained from scratch on large data or even with low-data regime.
arXiv Detail & Related papers (2024-07-09T08:47:13Z) - CT-MVSNet: Efficient Multi-View Stereo with Cross-scale Transformer [8.962657021133925]
Cross-scale transformer (CT) processes feature representations at different stages without additional computation.
We introduce an adaptive matching-aware transformer (AMT) that employs different interactive attention combinations at multiple scales.
We also present a dual-feature guided aggregation (DFGA) that embeds the coarse global semantic information into the finer cost volume construction.
arXiv Detail & Related papers (2023-12-14T01:33:18Z) - ViTAEv2: Vision Transformer Advanced by Exploring Inductive Bias for
Image Recognition and Beyond [76.35955924137986]
We propose a Vision Transformer Advanced by Exploring intrinsic IB from convolutions, i.e., ViTAE.
ViTAE has several spatial pyramid reduction modules to downsample and embed the input image into tokens with rich multi-scale context.
We obtain the state-of-the-art classification performance, i.e., 88.5% Top-1 classification accuracy on ImageNet validation set and the best 91.2% Top-1 accuracy on ImageNet real validation set.
arXiv Detail & Related papers (2022-02-21T10:40:05Z) - Vision Transformer with Progressive Sampling [73.60630716500154]
We propose an iterative and progressive sampling strategy to locate discriminative regions.
When trained from scratch on ImageNet, PS-ViT performs 3.8% higher than the vanilla ViT in terms of top-1 accuracy.
arXiv Detail & Related papers (2021-08-03T18:04:31Z) - ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias [76.16156833138038]
We propose a novel Vision Transformer Advanced by Exploring intrinsic IB from convolutions, ie, ViTAE.
ViTAE has several spatial pyramid reduction modules to downsample and embed the input image into tokens with rich multi-scale context.
In each transformer layer, ViTAE has a convolution block in parallel to the multi-head self-attention module, whose features are fused and fed into the feed-forward network.
arXiv Detail & Related papers (2021-06-07T05:31:06Z) - Vision Transformers are Robust Learners [65.91359312429147]
We study the robustness of the Vision Transformer (ViT) against common corruptions and perturbations, distribution shifts, and natural adversarial examples.
We present analyses that provide both quantitative and qualitative indications to explain why ViTs are indeed more robust learners.
arXiv Detail & Related papers (2021-05-17T02:39:22Z) - Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation [63.46694853953092]
Swin-Unet is an Unet-like pure Transformer for medical image segmentation.
tokenized image patches are fed into the Transformer-based U-shaped decoder-Decoder architecture.
arXiv Detail & Related papers (2021-05-12T09:30:26Z) - Visual Saliency Transformer [127.33678448761599]
We develop a novel unified model based on a pure transformer, Visual Saliency Transformer (VST), for both RGB and RGB-D salient object detection (SOD)
It takes image patches as inputs and leverages the transformer to propagate global contexts among image patches.
Experimental results show that our model outperforms existing state-of-the-art results on both RGB and RGB-D SOD benchmark datasets.
arXiv Detail & Related papers (2021-04-25T08:24:06Z) - CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image
Classification [17.709880544501758]
We propose a dual-branch transformer to combine image patches of different sizes to produce stronger image features.
Our approach processes small-patch and large-patch tokens with two separate branches of different computational complexity.
Our proposed cross-attention only requires linear time for both computational and memory complexity instead of quadratic time otherwise.
arXiv Detail & Related papers (2021-03-27T13:03:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.