論文の概要: A generative model for molecule generation based on chemical reaction
trees
- arxiv url: http://arxiv.org/abs/2106.03394v1
- Date: Mon, 7 Jun 2021 07:47:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-08 18:25:54.250177
- Title: A generative model for molecule generation based on chemical reaction
trees
- Title(参考訳): 化学反応木に基づく分子生成生成モデル
- Authors: Dai Hai Nguyen and Koji Tsuda
- Abstract要約: 多段階化学反応木を用いた分子生成モデルを提案する。
具体的には,まず,予測された反応テンプレートと市販分子を用いた化学反応ツリーを提案する。
実験により, 生成物分子が所望の化学的性質を持つ化学反応を生成できることが示された。
- 参考スコア(独自算出の注目度): 4.118244965749287
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep generative models have been shown powerful in generating novel molecules
with desired chemical properties via their representations such as strings,
trees or graphs. However, these models are limited in recommending synthetic
routes for the generated molecules in practice. We propose a generative model
to generate molecules via multi-step chemical reaction trees. Specifically, our
model first propose a chemical reaction tree with predicted reaction templates
and commercially available molecules (starting molecules), and then perform
forward synthetic steps to obtain product molecules. Experiments show that our
model can generate chemical reactions whose product molecules are with desired
chemical properties. Also, the complete synthetic routes for these product
molecules are provided.
- Abstract(参考訳): 深い生成モデルは、文字列、木、グラフなどの表現を通じて、望ましい化学的性質を持つ新しい分子を生成するために強力に示されている。
しかし、これらのモデルは実際に生成された分子の合成経路を推奨することに制限されている。
多段階化学反応木を用いた分子生成モデルを提案する。
具体的には, 反応テンプレートを予測し, 市販分子 (分子開始) を合成し, 生成物分子を得るための前処理を行う化学反応ツリーを提案する。
実験の結果, 生成物分子が所望の化学的性質を持つ化学反応を生成できることがわかった。
また、これらの生成物分子の完全な合成経路を提供する。
関連論文リスト
- Learning Chemical Reaction Representation with Reactant-Product Alignment [50.28123475356234]
本稿では,様々な有機反応関連タスクに適した新しい化学反応表現学習モデルであるモデルネームを紹介する。
反応物質と生成物との原子対応を統合することにより、反応中に生じる分子変換を識別し、反応機構の理解を深める。
反応条件を化学反応表現に組み込むアダプタ構造を設計し、様々な反応条件を処理し、様々なデータセットや下流タスク、例えば反応性能予測に適応できるようにした。
論文 参考訳(メタデータ) (2024-11-26T17:41:44Z) - Generating High-Precision Force Fields for Molecular Dynamics Simulations to Study Chemical Reaction Mechanisms using Molecular Configuration Transformer [8.267664135065903]
本稿では,以前に開発されたグラフニューラルネットワークに基づく分子モデルを用いて,分子モデリングのための高精度力場を訓練する手法を提案する。
このポテンシャルエネルギー関数は計算コストの低い高精度なシミュレーションを可能にし、化学反応のメカニズムをより正確に計算する。
論文 参考訳(メタデータ) (2023-12-31T13:43:41Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
化学的・生物学的性質が望ましい分子の生成は、薬物発見にとって重要である。
本稿では,分子の結合分布とその特性を捉える確率的生成モデルを提案する。
本手法は種々の分子設計タスクにおいて非常に強力な性能を発揮する。
論文 参考訳(メタデータ) (2023-06-09T03:04:21Z) - Bridging the Gap between Chemical Reaction Pretraining and Conditional
Molecule Generation with a Unified Model [3.3031562864527664]
反応表現学習と分子生成の両課題に対処する統合フレームワークを提案する。
有機化学機構にインスパイアされた我々は,モデルに誘導バイアスを組み込むことのできる,新しい事前学習フレームワークを開発した。
我々のフレームワークは、ダウンストリームタスクに挑戦する上で、最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-03-13T10:06:41Z) - DiffBP: Generative Diffusion of 3D Molecules for Target Protein Binding [51.970607704953096]
従来の研究は通常、原子の要素タイプと3次元座標を1つずつ生成する自己回帰的な方法で原子を生成する。
現実世界の分子系では、分子全体の原子間の相互作用が大域的であり、原子間のエネルギー関数が結合する。
本研究では、標的タンパク質に基づく分子3次元構造の生成拡散モデルを構築し、非自己回帰的に全原子レベルで構築する。
論文 参考訳(メタデータ) (2022-11-21T07:02:15Z) - Scalable Fragment-Based 3D Molecular Design with Reinforcement Learning [68.8204255655161]
分子構築に階層的エージェントを用いるスケーラブルな3D設計のための新しいフレームワークを提案する。
様々な実験において、エネルギーのみを考慮に入れたエージェントが、100以上の原子を持つ分子を効率よく生成できることが示されている。
論文 参考訳(メタデータ) (2022-02-01T18:54:24Z) - Barking up the right tree: an approach to search over molecule synthesis
DAGs [28.13323960125482]
現在の分子の深層生成モデルは合成可能性を無視している。
我々は,現実世界のプロセスをよりよく表現する深い生成モデルを提案する。
我々のアプローチは化学空間をうまくモデル化でき、幅広い多様な分子を生成できることを示します。
論文 参考訳(メタデータ) (2020-12-21T17:35:06Z) - Learning Latent Space Energy-Based Prior Model for Molecule Generation [59.875533935578375]
分子モデリングのためのSMILES表現を用いた潜時空間エネルギーに基づく先行モデルについて学習する。
本手法は,最先端モデルと競合する妥当性と特異性を持つ分子を生成することができる。
論文 参考訳(メタデータ) (2020-10-19T09:34:20Z) - Learning Graph Models for Retrosynthesis Prediction [90.15523831087269]
再合成予測は有機合成の基本的な問題である。
本稿では,前駆体分子のグラフトポロジーが化学反応中にほとんど変化しないという考え方を生かしたグラフベースのアプローチを提案する。
提案モデルでは,テンプレートフリーおよび半テンプレートベースの手法よりも高い5,3.7%の精度でトップ1の精度を実現している。
論文 参考訳(メタデータ) (2020-06-12T09:40:42Z) - Multi-Objective Molecule Generation using Interpretable Substructures [38.637412590671865]
薬物発見は、特定の化学的性質を持つ新規化合物を見つけることを目的としている。
目的は、複数の性質制約の交わりで分子をサンプリングすることを学ぶことである。
我々は、分子の合理性と呼ばれる部分構造の語彙から分子を構成することによって、この複雑さを相殺することを提案する。
論文 参考訳(メタデータ) (2020-02-08T22:55:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。