Document-level Relation Extraction as Semantic Segmentation
- URL: http://arxiv.org/abs/2106.03618v1
- Date: Mon, 7 Jun 2021 13:44:44 GMT
- Title: Document-level Relation Extraction as Semantic Segmentation
- Authors: Ningyu Zhang, Xiang Chen, Xin Xie, Shumin Deng, Chuanqi Tan, Mosha
Chen, Fei Huang, Luo Si, Huajun Chen
- Abstract summary: Document-level relation extraction aims to extract relations among multiple entity pairs from a document.
This paper approaches the problem by predicting an entity-level relation matrix to capture local and global information.
We propose a Document U-shaped Network for document-level relation extraction.
- Score: 38.614931876015625
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Document-level relation extraction aims to extract relations among multiple
entity pairs from a document. Previously proposed graph-based or
transformer-based models utilize the entities independently, regardless of
global information among relational triples. This paper approaches the problem
by predicting an entity-level relation matrix to capture local and global
information, parallel to the semantic segmentation task in computer vision.
Herein, we propose a Document U-shaped Network for document-level relation
extraction. Specifically, we leverage an encoder module to capture the context
information of entities and a U-shaped segmentation module over the image-style
feature map to capture global interdependency among triples. Experimental
results show that our approach can obtain state-of-the-art performance on three
benchmark datasets DocRED, CDR, and GDA.
Related papers
- A Plug-and-Play Method for Rare Human-Object Interactions Detection by Bridging Domain Gap [50.079224604394]
We present a novel model-agnostic framework called textbfContext-textbfEnhanced textbfFeature textbfAment (CEFA)
CEFA consists of a feature alignment module and a context enhancement module.
Our method can serve as a plug-and-play module to improve the detection performance of HOI models on rare categories.
arXiv Detail & Related papers (2024-07-31T08:42:48Z) - A Semantic Mention Graph Augmented Model for Document-Level Event Argument Extraction [12.286432133599355]
Document-level Event Argument Extraction (DEAE) aims to identify arguments and their specific roles from an unstructured document.
advanced approaches on DEAE utilize prompt-based methods to guide pre-trained language models (PLMs) in extracting arguments from input documents.
We propose a semantic mention Graph Augmented Model (GAM) to address these two problems in this paper.
arXiv Detail & Related papers (2024-03-12T08:58:07Z) - Multi-Grained Multimodal Interaction Network for Entity Linking [65.30260033700338]
Multimodal entity linking task aims at resolving ambiguous mentions to a multimodal knowledge graph.
We propose a novel Multi-GraIned Multimodal InteraCtion Network $textbf(MIMIC)$ framework for solving the MEL task.
arXiv Detail & Related papers (2023-07-19T02:11:19Z) - ReSel: N-ary Relation Extraction from Scientific Text and Tables by
Learning to Retrieve and Select [53.071352033539526]
We study the problem of extracting N-ary relations from scientific articles.
Our proposed method ReSel decomposes this task into a two-stage procedure.
Our experiments on three scientific information extraction datasets show that ReSel outperforms state-of-the-art baselines significantly.
arXiv Detail & Related papers (2022-10-26T02:28:02Z) - A Masked Image Reconstruction Network for Document-level Relation
Extraction [3.276435438007766]
Document-level relation extraction requires inference over multiple sentences to extract complex relational triples.
We propose a novel Document-level Relation Extraction model based on a Masked Image Reconstruction network (DRE-MIR)
We evaluate our model on three public document-level relation extraction datasets.
arXiv Detail & Related papers (2022-04-21T02:41:21Z) - Global-and-Local Collaborative Learning for Co-Salient Object Detection [162.62642867056385]
The goal of co-salient object detection (CoSOD) is to discover salient objects that commonly appear in a query group containing two or more relevant images.
We propose a global-and-local collaborative learning architecture, which includes a global correspondence modeling (GCM) and a local correspondence modeling (LCM)
The proposed GLNet is evaluated on three prevailing CoSOD benchmark datasets, demonstrating that our model trained on a small dataset (about 3k images) still outperforms eleven state-of-the-art competitors trained on some large datasets (about 8k-200k images)
arXiv Detail & Related papers (2022-04-19T14:32:41Z) - An End-to-end Model for Entity-level Relation Extraction using
Multi-instance Learning [2.111790330664657]
We present a joint model for entity-level relation extraction from documents.
We achieve state-of-the-art relation extraction results on the DocRED dataset.
Our experimental results suggest that a joint approach is on par with task-specific learning, though more efficient due to shared parameters and training steps.
arXiv Detail & Related papers (2021-02-11T12:49:39Z) - Coarse-to-Fine Entity Representations for Document-level Relation
Extraction [28.39444850200523]
Document-level Relation Extraction (RE) requires extracting relations expressed within and across sentences.
Recent works show that graph-based methods, usually constructing a document-level graph that captures document-aware interactions, can obtain useful entity representations.
We propose the textbfCoarse-to-textbfFine textbfEntity textbfRepresentation model (textbfCFER) that adopts a coarse-to-fine strategy.
arXiv Detail & Related papers (2020-12-04T10:18:59Z) - Global-to-Local Neural Networks for Document-Level Relation Extraction [11.900280120655898]
Relation extraction (RE) aims to identify the semantic relations between named entities in text.
Recent years have witnessed it raised to the document level, which requires complex reasoning with entities and mentions throughout an entire document.
We propose a novel model to document-level RE, by encoding the document information in terms of entity global and local representations as well as context relation representations.
arXiv Detail & Related papers (2020-09-22T07:30:19Z) - Bidirectional Graph Reasoning Network for Panoptic Segmentation [126.06251745669107]
We introduce a Bidirectional Graph Reasoning Network (BGRNet) to mine the intra-modular and intermodular relations within and between foreground things and background stuff classes.
BGRNet first constructs image-specific graphs in both instance and semantic segmentation branches that enable flexible reasoning at the proposal level and class level.
arXiv Detail & Related papers (2020-04-14T02:32:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.