A Masked Image Reconstruction Network for Document-level Relation
Extraction
- URL: http://arxiv.org/abs/2204.09851v1
- Date: Thu, 21 Apr 2022 02:41:21 GMT
- Title: A Masked Image Reconstruction Network for Document-level Relation
Extraction
- Authors: Liang Zhang, Yidong Cheng
- Abstract summary: Document-level relation extraction requires inference over multiple sentences to extract complex relational triples.
We propose a novel Document-level Relation Extraction model based on a Masked Image Reconstruction network (DRE-MIR)
We evaluate our model on three public document-level relation extraction datasets.
- Score: 3.276435438007766
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Document-level relation extraction aims to extract relations among entities
within a document. Compared with its sentence-level counterpart, Document-level
relation extraction requires inference over multiple sentences to extract
complex relational triples. Previous research normally complete reasoning
through information propagation on the mention-level or entity-level
document-graphs, regardless of the correlations between the relationships. In
this paper, we propose a novel Document-level Relation Extraction model based
on a Masked Image Reconstruction network (DRE-MIR), which models inference as a
masked image reconstruction problem to capture the correlations between
relationships. Specifically, we first leverage an encoder module to get the
features of entities and construct the entity-pair matrix based on the
features. After that, we look on the entity-pair matrix as an image and then
randomly mask it and restore it through an inference module to capture the
correlations between the relationships. We evaluate our model on three public
document-level relation extraction datasets, i.e. DocRED, CDR, and GDA.
Experimental results demonstrate that our model achieves state-of-the-art
performance on these three datasets and has excellent robustness against the
noises during the inference process.
Related papers
- Multimodal Relational Triple Extraction with Query-based Entity Object Transformer [20.97497765985682]
Multimodal Relation Extraction is crucial for constructing flexible and realistic knowledge.
We propose Multimodal Entity-Object Triple Extraction, which aims to extract all triples (entity, relation, object region) from image-text pairs.
We also propose QEOT, a query-based model with a selective attention mechanism to dynamically explore the interaction and fusion of textual and visual information.
arXiv Detail & Related papers (2024-08-16T12:43:38Z) - A Plug-and-Play Method for Rare Human-Object Interactions Detection by Bridging Domain Gap [50.079224604394]
We present a novel model-agnostic framework called textbfContext-textbfEnhanced textbfFeature textbfAment (CEFA)
CEFA consists of a feature alignment module and a context enhancement module.
Our method can serve as a plug-and-play module to improve the detection performance of HOI models on rare categories.
arXiv Detail & Related papers (2024-07-31T08:42:48Z) - ReSel: N-ary Relation Extraction from Scientific Text and Tables by
Learning to Retrieve and Select [53.071352033539526]
We study the problem of extracting N-ary relations from scientific articles.
Our proposed method ReSel decomposes this task into a two-stage procedure.
Our experiments on three scientific information extraction datasets show that ReSel outperforms state-of-the-art baselines significantly.
arXiv Detail & Related papers (2022-10-26T02:28:02Z) - RelationPrompt: Leveraging Prompts to Generate Synthetic Data for
Zero-Shot Relation Triplet Extraction [65.4337085607711]
We introduce the task setting of Zero-Shot Relation Triplet Extraction (ZeroRTE)
Given an input sentence, each extracted triplet consists of the head entity, relation label, and tail entity where the relation label is not seen at the training stage.
We propose to synthesize relation examples by prompting language models to generate structured texts.
arXiv Detail & Related papers (2022-03-17T05:55:14Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
We propose to explicitly teach the model to capture relevant contexts and entity types by supervising and augmenting intermediate steps (SAIS) for relation extraction.
Based on a broad spectrum of carefully designed tasks, our proposed SAIS method not only extracts relations of better quality due to more effective supervision, but also retrieves the corresponding supporting evidence more accurately.
arXiv Detail & Related papers (2021-09-24T17:37:35Z) - D-REX: Dialogue Relation Extraction with Explanations [65.3862263565638]
This work focuses on extracting explanations that indicate that a relation exists while using only partially labeled data.
We propose our model-agnostic framework, D-REX, a policy-guided semi-supervised algorithm that explains and ranks relations.
We find that about 90% of the time, human annotators prefer D-REX's explanations over a strong BERT-based joint relation extraction and explanation model.
arXiv Detail & Related papers (2021-09-10T22:30:48Z) - Eider: Evidence-enhanced Document-level Relation Extraction [56.71004595444816]
Document-level relation extraction (DocRE) aims at extracting semantic relations among entity pairs in a document.
We propose a three-stage evidence-enhanced DocRE framework consisting of joint relation and evidence extraction, evidence-centered relation extraction (RE), and fusion of extraction results.
arXiv Detail & Related papers (2021-06-16T09:43:16Z) - Document-level Relation Extraction as Semantic Segmentation [38.614931876015625]
Document-level relation extraction aims to extract relations among multiple entity pairs from a document.
This paper approaches the problem by predicting an entity-level relation matrix to capture local and global information.
We propose a Document U-shaped Network for document-level relation extraction.
arXiv Detail & Related papers (2021-06-07T13:44:44Z) - Document-Level Relation Extraction with Reconstruction [28.593318203728963]
We propose a novel encoder-classifier-reconstructor model for document-level relation extraction (DocRE)
The reconstructor reconstructs the ground-truth path dependencies from the graph representation, to ensure that the proposed DocRE model pays more attention to encode entity pairs with relationships in the training.
Experimental results on a large-scale DocRE dataset show that the proposed model can significantly improve the accuracy of relation extraction on a strong heterogeneous graph-based baseline.
arXiv Detail & Related papers (2020-12-21T14:29:31Z) - Relation Extraction with Contextualized Relation Embedding (CRE) [6.030060645424665]
This paper proposes an architecture for the relation extraction task that integrates semantic information with knowledge base modeling.
We present a model architecture that internalizes KB modeling in relation extraction.
The proposed CRE model achieves state of the art performance on datasets derived from The New York Times Annotated Corpus and FreeBase.
arXiv Detail & Related papers (2020-11-19T05:19:46Z) - Reasoning with Latent Structure Refinement for Document-Level Relation
Extraction [20.308845516900426]
We propose a novel model that empowers the relational reasoning across sentences by automatically inducing the latent document-level graph.
Specifically, our model achieves an F1 score of 59.05 on a large-scale document-level dataset (DocRED)
arXiv Detail & Related papers (2020-05-13T13:36:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.