論文の概要: Deep Neural Network-based Enhancement for Image and Video Streaming
Systems: A Survey and Future Directions
- arxiv url: http://arxiv.org/abs/2106.03727v1
- Date: Mon, 7 Jun 2021 15:42:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-08 17:26:58.601083
- Title: Deep Neural Network-based Enhancement for Image and Video Streaming
Systems: A Survey and Future Directions
- Title(参考訳): ディープニューラルネットワークによる画像・ビデオストリーミングシステムの強化:サーベイと今後の方向性
- Authors: Royson Lee, Stylianos I. Venieris, Nicholas D. Lane
- Abstract要約: ディープラーニングは、品質の低い画像から高品質な画像を生成する上で、前例のないパフォーマンスをもたらした。
本稿では,高速応答時間と高画質を実現する上で重要な要素として,ニューラルエンハンスメントを用いた最新のコンテンツ配信システムを提案する。
- 参考スコア(独自算出の注目度): 20.835654670825782
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Internet-enabled smartphones and ultra-wide displays are transforming a
variety of visual apps spanning from on-demand movies and 360{\deg} videos to
video-conferencing and live streaming. However, robustly delivering visual
content under fluctuating networking conditions on devices of diverse
capabilities remains an open problem. In recent years, advances in the field of
deep learning on tasks such as super-resolution and image enhancement have led
to unprecedented performance in generating high-quality images from low-quality
ones, a process we refer to as neural enhancement. In this paper, we survey
state-of-the-art content delivery systems that employ neural enhancement as a
key component in achieving both fast response time and high visual quality. We
first present the components and architecture of existing content delivery
systems, highlighting their challenges and motivating the use of neural
enhancement models as a countermeasure. We then cover the deployment challenges
of these models and analyze existing systems and their design decisions in
efficiently overcoming these technical challenges. Additionally, we underline
the key trends and common approaches across systems that target diverse
use-cases. Finally, we present promising future directions based on the latest
insights from deep learning research to further boost the quality of experience
of content delivery systems.
- Abstract(参考訳): インターネット対応のスマートフォンやウルトラワイドディスプレイは、オンデマンド映画や360{\deg}ビデオからビデオ会議やライブストリーミングまで、さまざまなビジュアルアプリを変えつつある。
しかしながら、多様な能力を持つデバイス上で変動するネットワーク条件下での視覚的コンテンツの堅牢な配信は、いまだに未解決の問題である。
近年,超解像や画像強調などのタスクにおける深層学習の進歩は,低品質の画像から高品質な画像を生成する上で,前例のないパフォーマンスをもたらしている。
本稿では,高速応答時間と高画質を実現する上で重要な要素としてニューラルエンハンスメントを用いた最先端コンテンツ配信システムについて検討する。
まず,既存のコンテンツ配信システムのコンポーネントとアーキテクチャを提示し,その課題を強調し,その対策としてニューラルエンハンスメントモデルの利用を動機づける。
次に、これらのモデルのデプロイメント課題を取り上げ、既存のシステムとその設計決定を分析し、これらの技術的課題を効率的に克服します。
さらに、多様なユースケースを対象とするシステム全体の主要なトレンドと共通アプローチを概説します。
最後に,deep learning researchの最新知見に基づいて,コンテンツ配信システムの体験の質をさらに高めるための今後の方向性を示す。
関連論文リスト
- Spatially Visual Perception for End-to-End Robotic Learning [33.490603706207075]
環境変動に対処するために3次元空間表現を利用する映像ベース空間認識フレームワークを提案する。
提案手法は,新しい画像拡張手法であるAugBlenderと,インターネット規模のデータに基づいてトレーニングされた最先端のモノクロ深度推定モデルを統合する。
論文 参考訳(メタデータ) (2024-11-26T14:23:42Z) - Transformer-based Image and Video Inpainting: Current Challenges and Future Directions [5.2088618044533215]
塗り絵は、写真復元、ビデオ編集、医用画像撮影など、様々な応用に有効なソリューションである。
CNNとGAN(Generative Adversarial Network)は、インペイントタスクを大幅に強化した。
ビジュアルトランスフォーマーが利用され、画像やビデオのインペイントにいくつかの改善が加えられている。
論文 参考訳(メタデータ) (2024-06-28T20:42:36Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
CoS(Chain-of-Spot)法は,注目領域に着目して特徴抽出を強化する手法である。
この技術により、LVLMは元の画像解像度を変更することなく、より詳細な視覚情報にアクセスすることができる。
実験の結果,LVLMの視覚的内容の理解と推論能力は著しく改善した。
論文 参考訳(メタデータ) (2024-03-19T17:59:52Z) - E2HQV: High-Quality Video Generation from Event Camera via
Theory-Inspired Model-Aided Deep Learning [53.63364311738552]
バイオインスパイアされたイベントカメラやダイナミックビジョンセンサーは、高時間分解能と高ダイナミックレンジでピクセルごとの明るさ変化(イベントストリームと呼ばれる)を捉えることができる。
イベントストリームを入力として取り出し、直感的な視覚化のために高品質なビデオフレームを生成する、イベント間ビデオ(E2V)ソリューションを求めている。
イベントから高品質なビデオフレームを生成するために設計された新しいE2VパラダイムであるtextbfE2HQVを提案する。
論文 参考訳(メタデータ) (2024-01-16T05:10:50Z) - A Survey on Super Resolution for video Enhancement Using GAN [0.0]
Generative Adversarial Networksのようなディープラーニングアルゴリズムを用いた超高解像度画像とビデオの最近の発展について紹介する。
低解像度ビデオの視覚的明快さと品質の向上を目指す進歩は、監視技術から医用画像まで、さまざまな分野で大きな可能性を秘めている。
このコレクションは、ジェネレーティブ・アドバイサル・ネットワークの広い分野に展開し、その原則、トレーニング・アプローチ、幅広い領域にわたるアプリケーションについて探求している。
論文 参考訳(メタデータ) (2023-12-27T08:41:38Z) - Integration and Performance Analysis of Artificial Intelligence and
Computer Vision Based on Deep Learning Algorithms [5.734290974917728]
本稿では,ディープラーニングとコンピュータビジョン技術の統合による応用効果の分析に焦点をあてる。
ディープラーニングは階層型ニューラルネットワークを構築することで歴史的なブレークスルーを実現し、エンドツーエンドの機能学習と画像の意味的理解を可能にする。
コンピュータビジョンの分野で成功した経験は、ディープラーニングアルゴリズムのトレーニングに強力なサポートを提供する。
論文 参考訳(メタデータ) (2023-12-20T09:37:06Z) - Neural Architecture Search for Dense Prediction Tasks in Computer Vision [74.9839082859151]
ディープラーニングは、ニューラルネットワークアーキテクチャエンジニアリングに対する需要の高まりにつながっている。
ニューラルネットワーク検索(NAS)は、手動ではなく、データ駆動方式でニューラルネットワークアーキテクチャを自動設計することを目的としている。
NASはコンピュータビジョンの幅広い問題に適用されている。
論文 参考訳(メタデータ) (2022-02-15T08:06:50Z) - Video Summarization Using Deep Neural Networks: A Survey [72.98424352264904]
ビデオ要約技術は、ビデオコンテンツの最も有益な部分を選択して、簡潔で完全なシノプシスを作成することを目指しています。
本研究は,この領域における最近の進歩に着目し,既存の深層学習に基づく総括的映像要約手法の包括的調査を行う。
論文 参考訳(メタデータ) (2021-01-15T11:41:29Z) - Transformers in Vision: A Survey [101.07348618962111]
トランスフォーマーは、入力シーケンス要素間の長い依存関係をモデリングし、シーケンスの並列処理をサポートします。
変圧器は設計に最小限の誘導バイアスを必要とし、自然にセット関数として適しています。
本調査は,コンピュータビジョン分野におけるトランスフォーマーモデルの概要を概観することを目的としている。
論文 参考訳(メタデータ) (2021-01-04T18:57:24Z) - Neural Enhancement in Content Delivery Systems: The State-of-the-Art and
Future Directions [16.04084457087104]
ディープラーニングは、品質の低い画像から高品質な画像を生成する上で、前例のないパフォーマンスをもたらした。
本稿では,高速応答時間と高画質を実現する上で重要な要素として,ニューラルエンハンスメントを用いた最新のコンテンツ配信システムを提案する。
論文 参考訳(メタデータ) (2020-10-12T16:41:29Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。